32 research outputs found

    MAGSEAL Delta Seal Gland Fixturing Device

    Get PDF
    This report is an in-depth analysis of Team 30’s research and progress pertaining to the assigned capstone project. The scope of the capstone project is to provide the sponsor, MAGSEAL, with a gland fixturing device that can hold at least 3 gland seals within the working confines of the facility’s CNC machine. The final iteration will utilize an aluminum base plate with retrofitted designs from Team 30 to fixture the gland seals in a simple manner without the use of electronics or pneumatics. Only simple mechanical actions from a human operator will be used to load and unload gland seals to and from this fixture plate. Throughout the course of the year, Team 30 has performed extensive research and development to formulate designs that will secure these seals to an aluminum base plate fixture. For this project to be successfully executed within the confines of a $5,000.00 budget, Team 30 decided to design a singular mock-up of the base plate to experiment with various securement designs. This aluminum base plate was fabricated from a 2” thick slab of aluminum which is easy to manipulate and test the team’s designs on. With the budget presented, Team 30 has provisions to buy the materials necessary, and ensure the ease of use for the operator as well as the successful integration of the Team’s designs into an aluminum base plate. The scope of this report is from when the project was assigned on September 17, 2018 to May 6, 2019. This project has undergone many design changes since the beginning of the year. We believe that we successfully design a product that would satisfy all of the goals presented to Team 30 by MAGSEAL. Although we successfully completed all design work, we unfortunately were not able to completely manufacture the final working product. We are confident that we have provided sufficient materials, drawings, and designs for this product to be fully recreated by MAGSEAL if they so choose

    Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines

    Get PDF
    In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 \ub1 9.57 \u3bcM versus 34.66 \ub1 7.65 \u3bcM for CisPt) and U87 MG glioblastoma (19.85 \ub1 0.97 \u3bcM versus 54.14 \ub1 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50=71.9 \ub1 15.1 \u3bcM for caPt(II)-complex and 8.7 \ub1 4.5 \u3bcM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery

    Human Olfactory Bulb Neural Stem Cells (Hu-OBNSCs) Can Be Loaded with Paclitaxel and Used to Inhibit Glioblastoma Cell Growth

    Get PDF
    Exploitation of the potential ability of human olfactory bulb (hOB) cells to carry, release, and deliver an effective, targeted anticancer therapy within the central nervous system (CNS) milieu remains elusive. Previous studies have demonstrated the marked ability of several types of stem cells (such as mesenchymal stem cells (MSCs) to carry and release different anti-cancer agents such as paclitaxel (PTX). Herein we investigate the ability of human olfactory bulb neural stem cells (Hu-OBNSCs) to carry and release paclitaxel, producing effective cytotoxic effects against cancer cells. We isolated Hu-OBNSCs from the hOB, uploaded them with PTX, and studied their potential cytotoxic effects against cancer cells in vitro. Interestingly, the Hu-OBNSCs displayed a five-fold increase in their resistance to the cytotoxicity of PTX, and the PTX-uploaded Hu-OBNSCs were able to inhibit proliferation and invasion, and to trigger marked cytotoxic effects on glioblastoma multiforme (GBM) cancer cells, and Human Caucasian fetal pancreatic adenocarcinoma 1 (CFPAC-1) in vitro. Despite their ability to resist the cytotoxic activity of PTX, the mechanism by which Hu-OBNSCs acquire resistance to PTX is not yet explained. Collectively our data indicate the ability of the Hu-OBNSCs to resist PTX, and to trigger effective cytotoxic effects against GBM cancer cells and CFPAC-1. This indicates their potential to be used as a carrier/vehicle for targeted anti-cancer therapy within the CNS

    Sensitivity of mesenchymal stromal cells to a new imidazole-based cationic Pt(II) complex with high in vitro anticancer activity

    Get PDF
    OBJECTIVE: Platinum drugs endowed with a novel chemical structure could offer an alternative therapeutic strategy, allowing to enlarge the spectrum of activity and to overcome the many drawbacks of the well-known cisplatin (CisPt) and its derivatives. Our group synthesised a new caPt(II)-complex that showed a very effective cytotoxic effect on triple-negative breast cancer cells and on cell lines partially resistant to cisplatin. In this study, we compared the in vitro stability of CisPt and caPt(II)-complex and their in vitro activity against human tumour cell lines. The drug sensitivity of Mesenchymal Stromal Cells (MSCs) and their ability to uptake and release the drugs was also investigated. MATERIALS AND METHODS: AT-MSCs were isolated, characterized and expanded from human adipose tissue. Drug stability was studied following incubation at 37\ub0C in complete cell culture medium both in the absence and in the presence of a monolayer of MSCs. The effect of CisPt and caPt(II)-complex was tested against mesothelioma (NCI-H28), glioblastoma (U87MG), pancreatic adenocarcinoma (CFPAC-1) and AT-MSCs by using a MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium) anti-proliferative assay in 96 multiwell plates. The amount of drugs incorporated and released by AT-MSCs drugs was evaluated by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: We found that caPt(II)-complex had a high stability until 9 days of treatment while CisPt lost its anticancer activity after only 24 hours of treatment. CisPt was significantly more active (IC50= 9.64 \ub1 5.10 \ub5M) than caPt(II)-complex (IC50= 21.25 \ub1 6.68 \ub5M) on CFPAC1 proliferation. On the contrary, caPt(II)-complex showed a significant higher activity than CisPt both against NCI-H28 mesothelioma (19.37 \ub1 9.57 \ub5M versus 34.66 \ub1 7.65 \ub5M for CisPt) and U87 MG (19.85 \ub1 0.97 \ub5M versus 54.14 \ub1 3.19 for CisPt). AT-MSCs showed a sensitivity to the cytotoxic effect of caPt(II)-complex (IC50=92.8 \ub1 28.9 \ub5M) and CisPt (IC50= 93.5 \ub1 47.6 \ub5M) that does not differ significantly but with a higher variability of response to CisPt expressed by different donors of AT-MSCs. To the antiproliferative activity of caPt(II)-complex and CisPt, AT-MSCs showed a significant different sensitivity (IC50= 71.9 \ub1 15.1 \ub5M for caPt(II)-complex and 8.7 \ub1 4.5 \ub5M for CisPt). AT-MSCs are able to uptake both the drugs in a similar amount of 2.49 pM /cell. DISCUSSION AND CONCLUSION: The high stability of caPt(II)-complex together with its significant anticancer activity against mesothelioma and glioblastoma makes this new platinum derivative a very interesting molecule able to improve cancer chemotherapy. The low sensitivity of AT- MSCs to the antiproliferative action exerted by caPt(II)-complex together with their ability to uptake and release the drug will be further investigated in order to optimize the drug loading procedure and verify the possibility to set up a system of cell mediated delivery of caPt(II) complex

    Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment

    Get PDF
    Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations,other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs), which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment

    Therapeutic prospects of extracellular vesicles in cancer treatment

    Get PDF
    Extracellular vesicles (EVs) are released by all cells within the tumor microenvironment, such as endothelial cells, tumor-associated fibroblasts, pericytes and immune system cells. The EVs carry the cargo of parental cells formed of proteins and nucleic acids, which can convey cell-to-cell communication influencing the maintenance and spread of the malignant neoplasm, for example promoting angiogenesis, tumor cell invasion and immune escape. However, EVs can also suppress tumor progression, either by the direct influence of the protein and nucleic acid cargo of the EVs or via antigen presentation to immune cells as tumor derived EVs carry on their surface some of the same antigens as the donor cells. Moreover, dendritic cell-derived EVs carry MHC class I and class II/peptide complexes and are able to prime other immune system cell types and activate an anti-tumor immune response. Given the relative longevity of vesicles within the circulation and their ability to cross blood-brain barriers, modification of these unique organelles offers the potential to create new biological-tools for cancer therapy. This review examines how modification of the EV cargo has the potential to target specific tumor mechanisms responsible for tumor formation and progression to develop new therapeutic strategies and to increase the efficacy of antitumor therapies

    The Lineage Determining Factor GRHL2 Collaborates with FOXA1 to Establish a Targetable Pathway in Endocrine Therapy-Resistant Breast Cancer.

    Get PDF
    Notwithstanding the positive clinical impact of endocrine therapies in estrogen receptor-alpha (ERα)-positive breast cancer, de novo and acquired resistance limits the therapeutic lifespan of existing drugs. Taking the position that resistance is nearly inevitable, we undertook a study to identify and exploit targetable vulnerabilities that were manifest in endocrine therapy-resistant disease. Using cellular and mouse models of endocrine therapy-sensitive and endocrine therapy-resistant breast cancer, together with contemporary discovery platforms, we identified a targetable pathway that is composed of the transcription factors FOXA1 and GRHL2, a coregulated target gene, the membrane receptor LYPD3, and the LYPD3 ligand, AGR2. Inhibition of the activity of this pathway using blocking antibodies directed against LYPD3 or AGR2 inhibits the growth of endocrine therapy-resistant tumors in mice, providing the rationale for near-term clinical development of humanized antibodies directed against these proteins

    Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials

    Get PDF
    YesFundus-controlled perimetry (FCP, also called 'microperimetry') allows for spatially-resolved mapping of visual sensitivity and measurement of fixation stability, both in clinical practice as well as research. The accurate spatial characterization of visual function enabled by FCP can provide insightful information about disease severity and progression not reflected by best-corrected visual acuity in a large range of disorders. This is especially important for monitoring of retinal diseases that initially spare the central retina in earlier disease stages. Improved intra- and inter-session retest-variability through fundus-tracking and precise point-wise follow-up examinations even in patients with unstable fixation represent key advantages of these technique. The design of disease-specific test patterns and protocols reduces the burden of extensive and time-consuming FCP testing, permitting a more meaningful and focused application. Recent developments also allow for photoreceptor-specific testing through implementation of dark-adapted chromatic and photopic testing. A detailed understanding of the variety of available devices and test settings is a key prerequisite for the design and optimization of FCP protocols in future natural history studies and clinical trials. Accordingly, this review describes the theoretical and technical background of FCP, its prior application in clinical and research settings, data that qualify the application of FCP as an outcome measure in clinical trials as well as ongoing and future developments

    CD146+ Pericytes Subset Isolated from Human Micro-Fragmented Fat Tissue Display a Strong Interaction with Endothelial Cells: A Potential Cell Target for Therapeutic Angiogenesis

    No full text
    Pericytes (PCs) are mesenchymal stromal cells (MSCs) that function as support cells and play a role in tissue regeneration and, in particular, vascular homeostasis. PCs promote endothelial cells (ECs) survival which is critical for vessel stabilization, maturation, and remodeling. In this study, PCs were isolated from human micro-fragmented adipose tissue (MFAT) obtained from fat lipoaspirate and were characterized as NG2(+)/PDGFR beta(+)/CD105(+) cells. Here, we tested the fat-derived PCs for the dispensability of the CD146 marker with the aim of better understanding the role of these PC subpopulations on angiogenesis. Cells from both CD146-positive (CD146(+)) and negative (CD146(-)) populations were observed to interact with human umbilical vein ECs (HUVECs). In addition, fat-derived PCs were able to induce angiogenesis of ECs in spheroids assay; and conditioned medium (CM) from both PCs and fat tissue itself led to the proliferation of ECs, thereby marking their role in angiogenesis stimulation. However, we found that CD146(+) cells were more responsive to PDGF-BB-stimulated migration, adhesion, and angiogenic interaction with ECs, possibly owing to their higher expression of NCAM/CD56 than the corresponding CD146(-) subpopulation. We conclude that in fat tissue, CD146-expressing cells may represent a more mature pericyte subpopulation that may have higher efficacy in controlling and stimulating vascular regeneration and stabilization than their CD146-negative counterpart
    corecore