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Application of Mesenchymal Stem
Cells for Therapeutic Agent Delivery
in Anti-Tumor Treatment
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Albert A. Rizvanov1 and Valeriya V. Solovyeva1*
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Russia, 2 School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom

Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells, which can be
isolated from different types of tissues including bone marrow, adipose tissue, tooth
pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents
the ethical concerns of working with embryonic or fetal stem cells, whilst still providing
cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes
and chondrocytes. An important feature of MSCs is the low immunogenicity due
to the lack of co-stimulatory molecules expression, meaning there is no need for
immunosuppression during allogenic transplantation. The tropism of MSCs to damaged
tissues and tumor sites makes them a promising vector for therapeutic agent delivery
to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to
encode tumor suppressor genes, immunomodulating cytokines and their combinations,
other therapeutic approaches include MSCs priming/loading with chemotherapeutic
drugs or nanoparticles. MSCs derived membrane microvesicles (MVs), which play an
important role in intercellular communication, are also considered as a new therapeutic
agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro-
and anti-oncogenic properties. In this regard, for the development of new methods
for cancer therapy using MSCs, a deeper understanding of the molecular and cellular
interactions between MSCs and the tumor microenvironment is necessary. In this review,
we discuss MSC and tumor interaction mechanisms and review the new therapeutic
strategies using MSCs and MSCs derived MVs for cancer treatment.

Keywords: mesenchymal stem cells, tumor microenvironment, membrane vesicles, cytokines, suppressor genes,
oncolytic viruses, chemotherapy resistance

INTRODUCTION

Due Q5to
Q6

Q7

their tropism to the tumor niche, mesenchymal stem cells (MSCs) are promising vectors
for the delivery of antitumor agents. The isolation of MSCs from adult tissues poses circumvents
many of the ethical and safety concerns which surround the use of embryonic or fetal stem cells,
as these have been comprehensively discussed elsewhere (Herberts et al., 2011; Volarevic et al.,
2018), this review focuses on the anti-tumor and therapeutic potential of MSCs. It is believed that
the migration of MSCs toward the tumor is determined by inflammatory signaling similar to a
chronic non-healing wound (Dvorak, 1986). It has been shown that MSCs are actively attracted
to hepatic carcinoma (Xie et al., 2017), breast cancer (Ma et al., 2015), glioma (Smith et al., 2015)
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and pre-metastatic niches (Arvelo et al., 2016). However, the
mechanism and factors responsible for the targeted tropism
of MSCs to wounds and tumors microenvironments remain
unclear. MSCs can migrate to sites of trauma and injury following
the gradient of chemo-attractants in the extracellular matrix
(ECM) and peripheral blood (Son et al., 2006) and local factors,
such as hypoxia, cytokine environment and Toll-like receptors
ligands, where upon arrival these local factors promote MSCs to
express growth factors that accelerate tissue regeneration (Rustad
and Gurtner, 2012).

It is believed, that following accumulation at the sites of
tumor formation and growth, MSCs differentiate into pericytes
or tumor-associated fibroblasts (TAF) thereby forming a growth
supporting microenvironment and secreting such trophic factors
as vascular endothelial growth factor (VEGF), interleukin
8 (IL-8), transforming growth factor β (TGF-β), epidermal
growth factor (EGF), and platelet-derived growth factor (PDGF).
(Nwabo Kamdje et al., 2017). For example, it has been shown
that MSCs stimulate tumor growth and vascularization within
the colorectal cancer xenograft model in vivo and can also induce
activation of Akt and ERK in endothelial cells, thereby increasing
their recruitment and angiogenic potential (Huang et al., 2013).
Whilst in co-culture in vitro experiments, MSCs stimulated the
invasion and proliferation of breast cancer cells (Pinilla et al.,
2009).

However, besides tumor progression, MSCs can also supress
tumor growth by cell cycle arrest and inhibition of proliferation,
as well as blocking of PI3K/AKT pathway and tumor suppressor
gene expression (Ramdasi et al., 2015). Anti-tumor properties are
described for MSCs isolated from various sources in experiments
both in vitro and in vivo of various tumor models (different tumor
models are discussed in (Blatt et al., 2013a,b). For instance, MSCs
injected into an in vivo model of Kaposi’s sarcoma suppressed
tumor growth (Khakoo et al., 2006). Similar results have been
reported for hepatoma (Qiao et al., 2008), pancreatic cancer
(Cousin et al., 2009; Doi et al., 2010), prostate cancer (Chanda
et al., 2009) and melanoma (Otsu et al., 2009) in both in vitro and
in vivo models.

Thus, there are contradictory reports about the role of MSCs
in tumor formation and development. The differences in the
anticancer activity of MSCs reported by different group might
be due to their activation status, which is discussed elsewhere
(Rivera-Cruz et al., 2017). Nevertheless, there is a consensus that
MSCs have enhanced tropism toward tumors which make them
ideal vector candidates for targeted anti-tumor therapy.

MSCs MIGRATE TOWARD IRRADIATED
TUMORS

Mesenchymal stem cells migration in the context of radiation
therapy may also be very promising for cancer therapy. In
fact, MSCs migrate better to irradiated 4T1 mouse mammary
tumor cells in comparison to non-irradiated 4T1 cells (Klopp
et al., 2007). Irradiated 4T1 cells are characterized by increased
expression levels of TGF-β1, VEGF, and PDGF-BB. The
activation of chemokine receptor CCR2 in MSCs interacting

with irradiated 4T1 cells was also observed, as well as higher
expression of MCP-1/CCL2 in the tumor parenchyma of 4T1
mice. Thus, MCP-1/CCL2/CCR2 signaling is important in the
attraction of MSCs to irradiated tumor cells. Furthermore, CCR2
inhibition resulted in a significant decrease in MSC migration
in vitro (Klopp et al., 2007). In irradiated glioma cells Kim
et al. (2010) reported increased IL-8 expression, which led to an
upregulation of IL-8 receptor by MSCs and an increase in their
migration potential and tropism to glioma cells.

Once at the irradiated tumor site, MSCs can suppress immune
cell activation directly through cell-cell interactions by binding
the membrane protein PD-1 with PD-L1 and PD-L2 ligands
on the T-lymphocyte surface. Moreover, MSCs can induce
T-lymphocyte agonism by suppressing the expression of CD80
and CD86 on antigen-presenting cells (Yan et al., 2014a,b). Thus,
the increased MSCs tropism to irradiated tumors may have the
opposite effect in cancer therapy.

The described data clearly illustrate the correlation between
tissue damage and MSCs recruitment. Due to an increase in
tropism to the tumor, genetically modified MSCs can be an
effective therapeutic tool. However, such therapeutic strategies
can be risky for cancer patients since MSCs can potentially
stimulate cancer progression within certain contexts.

MSCs CHEMOTAXIS MEDIATING
FACTORS

Mesenchymal stem cells migrate to damaged tissue, trauma or
sites of inflammation in response to secreted cytokines. Similarly,
the tumor environment consists of a large number of immune
cells, which alongside tumor cells, secrete soluble factors such as
VEGF, PDGF, IL-8, IL-6, basic fibroblast growth factor (bFGF
or FGF2), stromal cell-derived factor 1 (SDF-1), granulocyte
colony-stimulating factor (G-CSF), granulocyte-macrophage
colony stimulating factor (GM-CSF), monocyte chemoattractant
protein 1 (MCP1), hepatocyte growth factor (HGF), TGF-β
and urokinase-type plasminogen activator receptor (UPAR),
attracting MSCs (Ponte et al., 2007).

Soluble factors CCL21 (Sasaki et al., 2008), IL-8 (Birnbaum
et al., 2007), CXC3L1 (Sordi et al., 2005), IL-6 (Liu et al., 2011),
macrophage inflammatory protein 1δ (MIP-1δ) and MIP-3α

(Lejmi et al., 2015) directly mediate MSCs chemotaxis and
recruitment to damaged tissues. IL-6 mediates chemotaxis, which
facilitates MSC attraction into the main tumor growth sites
(Rattigan et al., 2010). Ringe et al. (2007) observed the dose-
dependent chemotactic activity of bone marrow-derived MSCs
in relation to SDF-1α and IL-8. IL-8 dependent recruitment of
MSCs was also detected in glioma. A multitude of angiogenic
cytokines secreted by glioma cells, including IL-8, actively attract
MSCs to tumor tissue (Ringe et al., 2007). Experiments with
conditioned medium from Huh-7 hepatoma cell (Huh-7 CM)
showed that MIP-1δ and MIP-3α induced MSC migration.
Moreover, after cultivation of MSCs in Huh-7 CM the expression
of matrix metalloproteinase 1 (MMP-1), necessary for migration,
was significantly increased (Lejmi et al., 2015). It was also
shown that PDGF-BB, VEGF and TGF-β1 can induce MSC
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migration (Schar et al., 2015). Experiments using MSCs modified
with CXCR4, showed that increased expression of the CXCR4
receptor enhances MSC migration toward tumor cells in both
in vitro and in vivo models (Kalimuthu et al., 2017). In
osteosarcoma models, it was described that SDF-1α is involved
in MSCs recruitment to tumor areas. MSCs in turn stimulate the
migration of osteocarcinoma cells by CCL5/RANTES secretion
(Xu et al., 2009), thereby promoting tumor invasion and
metastatic colonization by providing metastatic osteosarcoma
cells with a suitable microenvironment (Tsukamoto et al., 2012).

GENETICALLY ENGINEERED MSCs
WITH ANTICANCER ACTIVITY

In early studies MSCs genetically modified with interferon
β (IFN-β) were injected into human melanoma mouse
xenotransplantation models which resulted in decreased tumor
growth and increased (2-times) survival of mice in comparison
with controls (Studeny et al., 2002). In addition, it was shown
in a melanoma xenograft mouse model that additional loading
of IFN-β-modified canine MSCs with low amounts of cisplatin
significantly increased the effectiveness of the antitumor therapy
(Ahn et al., 2013).

Currently, besides IFN-β there are several other cytokines and
tumor-suppressor genes with anticancer activity which are used
for genetic modification of MSCs (Table 1). One of the most
promising therapeutic pro-apoptotic cytokines is tumor necrosis
factor (TNF)-related apoptosis-inducing ligand (TRAIL), which
selectively induces apoptosis in cancer cells. The antitumor
effect of TRAIL-modified MSCs has been described for different
types of tumors, within which TRAIL has not been found to
be cytotoxic for normal mammalian cells and tissues (Szegezdi
et al., 2009; Yuan et al., 2015). It is interesting that recombinant
TNF-α-activated MSCs in combination with radiation exposure
are able to significantly increase expression level of endogenous
TRAIL (Mohammadpour et al., 2016). Long-lasting expression
of endogenous TRAIL can also be observed in IFN-γ-modified
MSCs (Yang X. et al., 2014). To increase the therapeutic potential
of TRAIL-modified MSCs, it has been suggested they could
be used in combination with chemotherapeutic agents, such
as cisplatin (Zhang et al., 2012). However, some tumors have
mechanism of TRAIL resistance through overexpression of
X-linked inhibitory of apoptosis protein (XIAP), which inhibits
caspase 3 and 9 activation. Anti-apoptotic properties of XIAP
are under control of the second mitochondria-derived activator
of caspase (Smac), which prevents physical interaction of XIAP
and caspases thereby preventing apoptosis inhibition (Srinivasula
et al., 2001). Khorashadizadeh et al. (2015) used MSCs for the
delivery and simultaneous expression of novel cell penetrable
forms of Smac and TRAIL. The effectiveness of this approach
was shown in TRAIL-resistant breast cancer cell line MCF-7
(Khorashadizadeh et al., 2015).

Besides IFN-β and TRAIL as anti-tumor agents, interleukins
are also under consideration because they regulate inflammation
and immune responses For instance, IL-12-modified MSCs
decrease metastasis and induce cancer cell apoptosis in mice

with melanoma, lung cancer and hepatoma by 75, 83, and
91%, respectively. The activation of immune cells [cytotoxic
T-lymphocytes and natural killers (NK)] was also reported (Chen
et al., 2008). You et al. (2015) showed that injection of genetically
modified amniotic fluid-derived MSCs expressing IL-2 resulted in
induction of apoptosis in ovarian cancer cells in an in vivo mouse
model.

PTEN (phosphatase and tensin homolog deleted on
chromosome 10) is one of the main human tumor-suppressors.
Yang Z.S. et al. (2014) showed that PTEN expressing MSCs
are able to migrate toward DBTRG (brain glioblastoma) tumor
cells in vitro. PTEN-modified MSCs anti-cancer activity in
co-culture with U251 glioma cells in vitro was also described
(Guo et al., 2016). MSC-mediated delivery and anti-tumor
properties were described for other proteins (IFN-α, IFN-γ,
CX3CL1, apoptin, PEDF) and ncRNAs (miR-124 and miR-145)
(Table 1). Modification of MSCs for the co-expression of several
therapeutic proteins can increase their anti-cancer potential.
It was shown that TRAIL and herpes simplex virus thymidine
kinase (HSV-TK) modified MSCs in the presence of ganciclovir
(GCV) significantly reduced tumor growth and increased
survival of mice with highly malignant glioblastoma multiform
(GBM) (Martinez-Quintanilla et al., 2013).

The effect of direct administration of many of these agents
in cancer treatment is often limited due to their short half-
life in the body and pronounced toxicity in relation to normal,
non-cancerous cells. The use of MSCs for delivery of the
above mentioned therapeutic proteins can help to minimize
such problems because MSCs can selectively migrate to tumor
sites and exert therapeutic effects locally thereby significantly
increasing the concentration of the agent in the tumor and
reducing its systemic toxicity.

Another promising approach is delivery of oncolytic viruses
with MSCs. For instance, Du et al. (2017) used MSCs as
a vector for the delivery of oncolytic herpes simplex virus
(oHSV) [approved by Food and Drug Administration (FDA)
for melanoma treatment] in human brain melanoma metastasis
models in immunodeficient and immunocompetent mice.
Authors noted that the introduced MSCs-oHSV migrated to
the site of tumor formation and significantly prolonged the
survival of mice. In the immunocompetent model a combination
of MSCs-oHSV and PD-L1 blockade increases IFNγ-producing
CD8+ tumor-infiltrating T lymphocytes and results in a
significant increase of the median survival of treated animals (Du
et al., 2017).

MSCs PRIMED WITH ANTICANCER
DRUGS

Mesenchymal stem cells relative resistance to cytostatic and
cytotoxic chemotherapeutic drugs and migration ability opens
new ways to use them for targeted delivery of therapeutic drugs
directly to tumor sites. Pessina et al. (1999) showed that SR4987
BDF/1 mouse bone marrow stromal cells can be a reservoir for
doxorubicin (DOX) which can subsequently be released not only
in the form of DOX metabolites but also in its original form.
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TABLE 1 | The usage of genetically engineered Mesenchymal stem cells for target delivery of therapeutic agents with anti-tumor activity.

Agent Mechanism of action Model Reference

IFN-α Immunostimulation, apoptosis induction, angiogenesis
suppression

Immunocompetent mouse model of metastatic
melanoma

Ren et al., 2008a

IFN-β Increased activity of NK cells, inhibition of Mouse 4T1 breast tumor model Ling et al., 2010

Stat3 signaling Mouse prostate cancer lung metastasis model Ren et al., 2008b

PC-3 (prostate cancer) xenograft model Wang et al., 2012

PANC-1 (pancreatic carcinoma) xenograft model Kidd et al., 2010

IFN-γ Immunostimulation, apoptosis induction In vitro human leukemia cell line K562 Li et al., 2006

TRAIL Caspase activation, apoptosis induction Orthotopic model of Ewing sarcoma Guiho et al., 2016

Subcutaneous model of lung cancer Mohr et al., 2008; Yan et al., 2016

Xenograft model of human malignant mesothelioma Sage et al., 2014; Lathrop et al., 2015

Colo205 (colon cancer) xenograft tumor model Marini et al., 2017

Xenograft model of human myeloma Cafforio et al., 2017

Xenograft model of human tongue squamous cell
carcinoma (TSCC)

Xia et al., 2015

Eca-109 (esophageal cancer) xenograft model Li et al., 2014

Xenograft model of human glioma Kim et al., 2010; Choi et al., 2011;
Wang et al., 2017

IL-2 Immunostimulation Rat glioma model Nakamura et al., 2004

IL-12 Immune system cell activation Liver cancer H22 and MethA ascites models Han et al., 2014

Mouse model bearing subcutaneous SKOV3
(ovarian carcinoma) tumor explants

Zhao et al., 2011

Xenograft model of human glioma Hong et al., 2009; Ryu et al., 2011

IL-21 Immunostimulation Mouse model of B-cell lymphoma Kim et al., 2015

A2780 (ovarian cancer) xenograft model Hu et al., 2011

PTEN Induction of G(1)-phase cell cycle arrest In vitro glioma cell line Yang Z.S. et al., 2014; Guo et al., 2016

CX3CL1 Cytotoxic T cells and NK cells activation Mice bearing lung metastases of C26 (colon
carcinoma) and B16F10 (skin melanoma) cells

Xin et al., 2007

HSV-TK/GCV Drug precursors transformation 9L (glioma) xenograft model Uchibori et al., 2009

In vitro glioma cell lines 8-MG-BA, 42-MG-BA and
U-118 MG

Matuskova et al., 2010

CD/5-FC Drug precursors transformation Subcutaneous model of melanoma or colon cancer Kucerova et al., 2007, 2008

Cal72 (osteosarcoma) xenograft model NguyenThai et al., 2015

NK4 Apoptosis induction, angiogenesis and C-26 lung metastasis model Kanehira et al., 2007

lymphangiogenesis suppression Nude mice bearing gastric cancer xenografts Zhu et al., 2014

MHCC-97H (liver carcinoma) xenograft model Cai et al., 2017

Oncolytic viruses Tumor destruction by virus replication Orthotopic breast and lung tumors Hakkarainen et al., 2007

Mouse glioblastoma multiforme models Duebgen et al., 2014

A375N (melanoma) tumor xenografts Bolontrade et al., 2012

PEDF Inhibiting tumor angiogenesis, inducing apoptosis, Lewis lung carcinoma (LLC) xenograft model Chen et al., 2012

and restoring the VEGF-A/sFLT-1 ratio Mice bearing U87 gliomas Su et al., 2013

CT26 CRPC model Yang et al., 2016

Apoptin Tumor destruction, caspase 3 activation HepG2 (hepatocellular carcinoma) tumor xenografts Zhang et al., 2016

Lung carcinoma xenograft model Du et al., 2015

HNF4-α Wnt/β-catenin pathway inhibition SK-Hep-1 (hepatocellular carcinoma) tumor
xenografts

Wu et al., 2016

miR-124 Increase the differentiation of glioma stem cells Glioma tumor cells in a spheroid cell culture system Lee et al., 2013

by targeting SCP-1 or CDK6 In vitro human glioblastoma multiforme cell line Sharif et al., 2017

miR-145 Sox2 and Oct4 expression inhibition Glioma tumor cells in a spheroid cell culture system Lee et al., 2013

It was further shown that MSCs efficiently absorb and release
paclitaxel (PTX) in an active form (Pascucci et al., 2014), DOX,
and gemcitabine (GCB), all having an inhibitory effect on tongue
squamous cell carcinoma (SCC154) cells growth in vitro (Cocce
et al., 2017b).

Pessina et al. (2013) found that the maximum concentration
of PTX which did not affect MSC viability was 10 000 ng/mL.
The concentration is sufficient to decrease the viability of
certain types of tumor cells, for example, human leukemia
cells. In vivo investigations show that PTX-primed MSCs
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FIGURE 1 | MesenchymalQ3 stem

Q4

cells and tumor cells interaction as an MSC-based approach for cancer therapy. The chemotactic movement of MSCs toward a
tumor niche is driven by soluble factors, such as VEGF, PDGF, IL-8, IL-6, bFGF or FGF2, SDF-1, G-CSF, GM-CSF, MCP1, HGF, TGF-β, and UPAR. Genetic
modification of MSCs can be used to deliver a range of tumor-suppressing cargos directly into the tumor niche. These cargos include tumor suppressor (TRAIL,
PTEN, HSV-TK/GCV, CD/5-FC, NK4, PEDF, apoptin, HNF4-α), oncolytic viruses, immune-modulating agents (IFN-α, IFN-γ, IL-2, IL-12, IL-21, IFN-β, CX3CL1), and
regulators of gene expression (miRNAs and other non-coding RNAs). MSCs are also capable of delivering therapeutic drugs such as DOX, PTX, GCB, and CDDP
within the tumor site. In addition to using MSCs directly, microvesicles (MVs) isolated from MSCs represent an alternative approach to delivering these agents.

(MSCs-PTX) demonstrate strong antitumor activity inhibiting
the growth of tumor cells and vascularization of the tumor
in a MOLT-4 (leukemia) xenograft mouse model (Pessina
et al., 2013). The anti-tumor activity of primed MSCs is
currently being investigated on the different types of tumor
cells. For instance, Bonomi et al. (2016) showed that MSCs-
PTX suppress the proliferation of human myeloma cells RPMI
8226 in in vitro 3D dynamic culture system. The anti-
cancer activity of MSCs-PTX has been further shown in
relation to pancreatic carcinoma cells in vitro (Brini et al.,
2016).

Nicolay et al. (2016) showed that cisplatin (CDDP) had no
significant effect on cell morphology, adhesion or induction of
apoptosis in MSCs, nor does it affect their immunophenotype
or differentiation potential of MSCs once primed with CDDP.
This has been confirmed using CDDP at concentrations of
2.5 µg/ml and 5.0 µg/ml (Gilazieva et al., 2016). Thus, MSCs
are promising vectors for CDDP delivery toward the tumor
sites.

Beside chemical drugs in soluble form, MSCs can absorb
nanomaterials containing chemotherapeutic agents. For instance,
MSCs primed with silica nanoparticle-encapsulated DOX
promoted a significant increase in the apoptosis of U251 glioma
cells in vivo (Li et al., 2011).

Bonomi et al. (2017) in their work used MSCs from two
sources: dog adipose tissue and bone marrow, to study MSCs-
PTX antitumor activity on human glioma cells (T98G and
U87MG). The investigation once again showed the pronounced
antitumor effect of MSCs-PTX and opens new perspectives for
oncological disease therapy not only in humans but also in
animals (Bonomi et al., 2017).

MSC-DERIVED MICROVESICLES

Extracellular vesicles (EVs) [microvesicles (MVs) and exosomes]
released by a large number of cells play an important role
in intercellular communication. MVs from different cell types
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contain biologically active functional proteins, and nucleic acids
including mRNA and microRNA (Pokharel et al., 2016). It
was shown that MSC-derived MVs can promote progression
of various types of tumors. For instance, MSC-derived MVs
have been found to facilitate the migration of MCF7 breast
cancer cells by activating the Wnt signaling pathway (Lin et al.,
2013), promote the progression of nasopharyngeal carcinoma
cells (Shi et al., 2016) and increase the proliferation and
metastatic potential of gastric cancer cells (Gu et al., 2016).
MSC-derived MVs can also increase tumor cell resistance to
drugs. For example, MSC-derived MVs can induce resistance
to 5-fluorouracil in gastric cancer cells by activating the
CaM-Ks/Raf/MEK/ERK pathway (Ji et al., 2015). Bliss et al.
(2016) showed that a possible cause of increased resistance to
chemotherapy are micro-RNAs which are included in MVs, such
as miR-222/223, which support the resistance of the breast cancer
cells in the bone marrow. However, there are conflicting results,
for example Del Fattore et al. (2015) reported that MVs isolated
from bone marrow and cord blood-derived MSCs suppressed
division and induced apoptosis in glioblastoma cells. However,
MVs isolated from adipose tissue-derived MSCs showed the
opposite effect and stimulated tumor cell proliferation (Del
Fattore et al., 2015). As mentioned above, such differences might
be explained by activation status of parental MSCs from which
the MVs are generated.

One of the possible approaches to use MSCs-isolated MVs
in therapy is via the priming/loading of these structures with
therapeutic agents. Pascucci et al. (2014) demonstrated that the
antitumor activity of MSCs-PTX may be due to the release
of a large number of MVs by the MScs. Loaded with PTX
MSCs demonstrate vacuole-like structures and accumulation of
MVs in extracellular space without significant change in cell
morphology. Presence of PTX in MVs was confirmed by Fourier
spectroscopy. The release of PTX containing MVs were found to
exert anti-cancer activity which was confirmed using the human
pancreatic adenocarcinoma cell line CFPAC-1 in vitro (Pascucci
et al., 2014). This finding was supported by the recent studies
of Cocce et al. (2017a) which showed antitumor activity of MVs
derived from MSCs-PTX and MSCs-GCB on pancreatic cancer
cells in vitro.

Yuan et al. (2017) investigated antitumor activity of MSC-
derived MVs carrying recombinant TRAIL (rTRAIL) on their
surface. Cultivation of M231 breast cancer cells in the presence of
MVs led to the induction of apoptosis in cancer cells. At the same
time, MVs did not induce apoptosis in normal human bronchial
epithelial cells (HBECs). The use of MSC-derived MVs bearing
rTRAIL on their surface proved to be more effective than using
pure rTRAIL (Yuan et al., 2017).

Kalimuthu et al. (2016) developed bioluminescent EVs using
Renilla luciferase (Rluc)-expressing MSCs (EV-MSC/Rluc) and

showed that these vesicles migrate at tumor sites in the Lewis
lung carcinoma (LLC) model in vivo. Significant cytotoxic effect
of EV-MSC/Rluc on LLC and 4T1 cells in vitro was also noticed.
Moreover, EV-MSC/Rluc inhibited LLC tumor growth in vivo
(Kalimuthu et al., 2016).

CONCLUSION

Tumor development and response to therapy depends not
only on tumor cells, but also on different cell types which
form the stroma and microenvironment. These include immune
cells, vascular endothelial cells and tumor-associated stromal
cells such as TAF and MSCs. Due to tropism to the tumor
microenvironment, MSCs can be considered as promising
vectors for the delivery of antitumor agents (Figure 1). To date,
there are large number of experimental studies that confirm
the anti-oncogenic potential of MSCs modified with therapeutic
genes and/or loaded with chemotherapeutic drugs. Thus, the
approach of therapeutic agent delivery to the tumor sites using
MSCs is promising. However, since it is known that native
MSCs can exhibit not only anticancer but also pro-oncogenic
properties, further research is needed to improve the safety of
this approach. An alternative to using intact MSCs to deliver
anti-tumor agents, is the use of MSC-derived MVs which can
also be loaded with the same antitumor agents. Further research
is needed to evaluate the safety and efficiency of the different
therapeutic approaches described in this review to harness the
promising potential of MSCs as therapeutic vectors.
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