1,960 research outputs found

    Segregation and ordering at the (1×2) reconstructed Pt80Fe20(110) surface determined by low-energy electron diffraction

    Get PDF
    The surface of an ordered Pt80Fe20(110) crystal exhibits (1×2) and (1×3) reconstructions depending on the annealing treatment after ion bombardment. The (1×3) structure occurs after annealing in the range 750 to 900 K. Annealing above 1000 K leads to the (1×2) structure, which is, from the present result, unambiguously attributed to the same geometrical reconstruction as Pt(110) but with smaller relaxation amplitudes: a detailed low-energy electron-diffraction analysis concludes to a missing-row structure with row pairing in layers 2 and 4 accompanied by a buckling in layers 3 and 5. The top layer spacing is contracted by 13%, and further relaxations are detectable down to the fifth layer. The specific diffraction spots associated with the bulk chemical ordering along the dense [1¯10] rows are very weak: The I(V) analysis shows that this chemical ordering is absent in the outermost ‘‘visible’’ rows but gradually recovers over five to six layers deep. General Pt enrichment is found in the surface ‘‘visible’’ rows (in layers 1–3), but segregation and order yield a subtle redistribution of Pt and Fe atoms in deeper rows: For example, in layer 2, the visible row is Pt rich, whereas the other row (buried under layer 1) is enriched with Fe. Because of the many parameters considered, a fit procedure was applied to a large data basis to solve the structure; the results were confirmed and illustrated subsequently by a standard I(V) analysis for the most relevant parameters. The final r factors are RDE=0.36, RP=0.34, and RZJ=0.14 for two beam sets at normal and oblique incidence consisting of 26 and 21 beams, respectively

    Uniqueness in MHD in divergence form: right nullvectors and well-posedness

    Full text link
    Magnetohydrodynamics in divergence form describes a hyperbolic system of covariant and constraint-free equations. It comprises a linear combination of an algebraic constraint and Faraday's equations. Here, we study the problem of well-posedness, and identify a preferred linear combination in this divergence formulation. The limit of weak magnetic fields shows the slow magnetosonic and Alfven waves to bifurcate from the contact discontinuity (entropy waves), while the fast magnetosonic wave is a regular perturbation of the hydrodynamical sound speed. These results are further reported as a starting point for characteristic based shock capturing schemes for simulations with ultra-relativistic shocks in magnetized relativistic fluids.Comment: To appear in J Math Phy

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Translational studies of phenotypic probes for the mononuclear phagocyte system and liposomal pharmacologys

    Get PDF
    As nanoparticles (NPs) are cleared via phagocytes of the mononuclear phagocyte system (MPS), we hypothesized that the function of circulating monocytes and dendritic cells (MO/DC) in blood can predict NP clearance (CL). We measured MO/DC phagocytosis and reactive oxygen species (ROS) production in mice, rats, dogs, and patients with refractory solid tumors. Pharmacokinetic studies of polyethylene glycol (PEG)-encapsulated liposomal doxorubicin (PEGylated liposomal doxirubicin [PLD]), CKD-602 (S-CKD602), and cisplatin (SPI-077) were performed at the maximum tolerated dose. MO/DC function was also evaluated in patients with recurrent epithelial ovarian cancer (EOC) administered PLD. Across species, a positive association was observed between cell function and CL of PEGylated liposomes. In patients with EOC, associations were observed between PLD CL and phagocytosis (R2 = 0.43, P = 0.04) and ROS production (R2 = 0.61, P = 0.008) in blood MO/DC. These findings suggest that probes of MPS function may help predict PEGylated liposome CL across species and PLD CL in patients with EOC

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure

    Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci

    Get PDF
    The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change

    “It ain’t (just) what you do, it’s (also) the way that you do it”: The role of Procedural Justice in the Implementation of Anti-social Behaviour Interventions with Young People

    Get PDF
    This paper provides an analysis of the introduction and implementation of hybrid powers to regulate anti-social behaviour, during a period of regulatory ‘hyperactivity’ in the UK. It explores the role of procedural justice by drawing on findings from a study conducted in England which investigated the implementation practices and experiences of young people and parents. These are considered against seven characteristics of procedural justice: voice; voluntariness; respectful treatment; parsimony; accuracy of information; fairness; and neutrality. The paper analyses the manner in which principles of voluntary cooperation can be corrupted by threats of punitive sanctions. It questions the extent to which the use of such hybrid orders fosters perceptions of legitimacy and supports the capacity of young people to avoid criminalisation

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
    corecore