1,252 research outputs found
Footprints of the Newly-Discovered Vela Supernova in Antarctic Ice Cores?
The recently-discovered, nearby young supernova remnant in the southeast
corner of the older Vela supernova remnant may have been seen in measurements
of nitrate abundances in Antarctic ice cores. Such an interpretation of this
twenty-year-old ice-core data would provide a more accurate dating of this
supernova than is possible purely using astrophysical techniques. It permits an
inference of the supernova4s Ti yield purely on an observational
basis, without reference to supernova modelling. The resulting estimates of the
supernova distance and light-arrival time are 200 pc and 700 years ago,
implying an expansion speed of 5,000 km/s for the supernova remnant. Such an
expansion speed has been argued elsewhere to imply the explosion to have been a
15 Type II supernova. This interpretation also adds new evidence to
the debate as to whether nearby supernovae can measurably affect nitrate
abundances in polar ice cores.Comment: 12 pages, TeX, 2 enclosed figures. Updated references, and more
detailed discussion of how inferences are made of supernova propertie
Vapour-liquid coexistence in many-body dissipative particle dynamics
Many-body dissipative particle dynamics is constructed to exhibit
vapour-liquid coexistence, with a sharp interface, and a vapour phase of
vanishingly small density. In this form, the model is an unusual example of a
soft-sphere liquid with a potential energy built out of local-density dependent
one-particle self energies. The application to fluid mechanics problems
involving free surfaces is illustrated by simulation of a pendant drop.Comment: 8 pages, 6 figures, revtex
Multilayered feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India
In the present research, possibility of predicting average summer-monsoon
rainfall over India has been analyzed through Artificial Neural Network models.
In formulating the Artificial Neural Network based predictive model, three
layered networks have been constructed with sigmoid non-linearity. The models
under study are different in the number of hidden neurons. After a thorough
training and test procedure, neural net with three nodes in the hidden layer is
found to be the best predictive model.Comment: 19 pages, 1 table, 3 figure
Nonlinear Realization of N=2 Superconformal Symmetry and Brane Effective Actions
Due to the incompatibility of the nonlinear realization of superconformal
symmetry and dilatation symmetry with the dilaton as the compensator field, in
the present paper it shows an alternative mechanism of spontaneous breaking the
N=2 superconformal symmetry to the N=0 case. By using the approach of nonlinear
transformations it is found that it leads to a space-filling brane theory with
Weyl scale W(1,3) symmetry. The dynamics of the resulting Weyl scale invariant
brane, along with that of other Nambu-Goldstone fields, is derived in terms of
the building blocks of the vierbein and the covariant derivative from the
Maurer-Cartan oneforms. A general coupling of the matter fields localized on
the brane world volume to these NG fields is also constructed.Comment: 22 pages, more references and comments are adde
Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems
We present a method for measuring single spins embedded in a solid by probing
two electron systems with a single electron transistor (SET). Restrictions
imposed by the Pauli Principle on allowed two electron states mean that the
spin state of such systems has a profound impact on the orbital states
(positions) of the electrons, a parameter which SET's are extremely well suited
to measure. We focus on a particular system capable of being fabricated with
current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and
lying directly beneath the SET island electrode, and we outline a measurement
strategy capable of resolving single electron and nuclear spins in this system.
We discuss the limitations of the measurement imposed by spin scattering
arising from fluctuations emanating from the SET and from lattice phonons. We
conclude that measurement of single spins, a necessary requirement for several
proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and
small textual changes. Submitted to Phys. Rev.
The BRS invariance of noncommutative U(N) Yang-Mills theory at the one-loop level
We show that U(N) Yang-Mills theory on noncommutative Minkowski space-time
can be renormalized, in a BRS invariant way, at the one-loop level, by
multiplicative dimensional renormalization of its coupling constant, its gauge
parameter and its fields. It is shown that the Slavnov-Taylor equation, the
gauge-fixing equation and the ghost equation hold, up to order , for the
MS renormalized noncommutative U(N) Yang-Mills theory. We give the value of the
pole part of every 1PI diagram which is UV divergent.Comment: Corrected typos. Version to appear in Nuclear Physics
Electronic polarization in pentacene crystals and thin films
Electronic polarization is evaluated in pentacene crystals and in thin films
on a metallic substrate using a self-consistent method for computing charge
redistribution in non-overlapping molecules. The optical dielectric constant
and its principal axes are reported for a neutral crystal. The polarization
energies P+ and P- of a cation and anion at infinite separation are found for
both molecules in the crystal's unit cell in the bulk, at the surface, and at
the organic-metal interface of a film of N molecular layers. We find that a
single pentacene layer with herring-bone packing provides a screening
environment approaching the bulk. The polarization contribution to the
transport gap P=(P+)+(P-), which is 2.01 eV in the bulk, decreases and
increases by only ~ 10% at surfaces and interfaces, respectively. We also
compute the polarization energy of charge-transfer (CT) states with fixed
separation between anion and cation, and compare to electroabsorption data and
to submolecular calculations. Electronic polarization of ~ 1 eV per charge has
a major role for transport in organic molecular systems with limited overlap.Comment: 10 revtex pages, 6 PS figures embedde
Equation of state and phonon frequency calculations of diamond at high pressures
The pressure-volume relationship and the zone-center optical phonon frequency
of cubic diamond at pressures up to 600 GPa have been calculated based on
Density Functional Theory within the Local Density Approximation and the
Generalized Gradient Approximation. Three different approaches, viz. a
pseudopotential method applied in the basis of plane waves, an all-electron
method relying on Augmented Plane Waves plus Local Orbitals, and an
intermediate approach implemented in the basis of Projector Augmented Waves
have been used. All these methods and approximations yield consistent results
for the pressure derivative of the bulk modulus and the volume dependence of
the mode Grueneisen parameter of diamond. The results are at variance with
recent precise measurements up to 140 GPa. Possible implications for the
experimental pressure determination based on the ruby luminescence method are
discussed.Comment: 10 pages, 6 figure
Perchlorate on Mars - Overview and Implications
Perchlorate was first detected on Mars by the Wet Chemistry Laboratory (WCL) instrument on the Phoenix lander at a concentration of ~0.5 wt% in northern plains soils. Since that initial detection, perchlorate (and likely chlorate) have been detected on Mars by both surface and orbital instruments. Perchlorate (ClO4-) is an oxidized chlorine compound and salts of perchlorate are kinetically stable (though very reactive at high temperature), very soluble, deliquescent, and have low eutectic temperature (which decreases the temperature for stable liquids on Mars). Chlorate (ClO3-) salts are similar, though they are less kinetically stable than perchlorates. Because many of the analytical signatures of perchlorate and chlorate are similar to the instruments we have used on Mars, we cannot always determine which species is present, so we will use the more generic term oxychlorine when referring to perchlorate and/or chlorate
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
- …
