334 research outputs found

    The effect of exercise induced hyperthermia on muscle fibre conduction velocity during sustained isometric contraction

    Get PDF
    This study investigated the effect of dynamic exercise in a hot environment on muscle fibre conduction velocity (MFCV) of the knee extensors during a sustained isometric contraction. Seven trained male cyclists (mean [±SD], age, and V_ O2max were 35 ± 9.9 and 57.4 ± 6.6 ml kg1 min1) cycled for 50 min at 60% of peak power output in either: (1) 40 C (HOT); or (2) 19 C (NEUTRO); and (3) remained passive in 40 C (PASS). Post-intervention a 100 s maximal sustained isometric contraction (SMC) of the knee extensors was performed. Rectal temperature increased (p < 0.01) for both HOT and NEUTRO with PASS unchanged and with HOT rising higher (p < 0.01) than NEUTRO (38.6 ± 0.4 vs. 37.6 ± 0.4 C). Muscle temperature increased (p < 0.01) for all three conditions with HOT rising the highest (p < 0.01) (40.3 ± 0.5 vs. 38.3 ± 0.3 and 37.6 ± 1.3 C for NEUTRO and PASS, respectively). Lactate showed higher accumulation (p < 0.01) for HOT than NEUTRO (6.9 ± 2.3 vs. 4.2 ± 2.1 mmol l1). During SMC the torque, electromyography root mean squared (RMS) and MFCV all significantly (p < 0.01) declined. Only in HOT did MFCV decline significantly (p < 0.01) less than torque and RMS (9.9 ± 6.2% vs. 37.5 ± 17.8% and 37.6 ± 21.4%, respectively). In conclusion, during exercise induced hyperthermia, reduced motor unit recruitment as opposed to slower conducting properties of the muscle fibre appears to be responsible for the greater reduction in torque output

    Preceding Race Efforts Affect Pacing and Short-Track Speed Skating Performance

    Get PDF
    Purpose: To examine whether preceding high-intensity race efforts in a competitive weekend affected pacing behaviour and performance in elite short-track speed skaters. Methods: Finishing and intermediate lap times were gathered from 500, 1000 and 1500 m Short Track Speed Skating World Cups during the seasons 2011-2016. The effect of preceding races on pacing behaviour and performance was explored using two studies. Study I: the effect of competing in extra races due to the Repechage (Rep) system, leading to an increased number of high-intensity race efforts prior to the subsequent main tournament race, was explored (500m: N=32, 1000m: N=34; 1500m: N=47). Study II: the performance of skaters over the tournament days was evaluated (500m: N=129, 1000m: N=54; 1500m: N=114). For both analytic approaches, a two-way repeated measures ANOVA was used to assess differences in pacing and performance within the skater over the races. Results: An additional number of preceding high-intensity race efforts due to the Rep system reduced the qualification percentage in the first main tournament race for the next stage of competition in all events (500m: Direct qualification=57.3%, Rep=25.0%; 1000m: Direct=44.2%, Rep=28.3%; 1500m: Direct=27.1%, Rep=18.2%), and led to a decreased pace in the initial two laps of the 500m event. In contrast, Tournament day (Saturday vs Sunday) only affected the pacing behaviour of female skaters during the 1500m event. Conclusion: High-intensity race efforts earlier on the day affected pacing and performance of elite skaters, while the effect of high-intensity race efforts from the previous day seem to be only marginal

    Research report for supporting practice research works (P1623, 2.2)

    Get PDF
    Documents best practice in supporting practice research works at other HE institutions including; policy, definitions, vocabulary options, metadata, workflows, repository advice and features, digitisation offers, case studies and advocacy. Report collated through visits to Goldsmiths and University of Creative Arts, conference calls to University of Westminster and Glasgow School of Arts and desk research of other UK and Australian HE Institutions

    An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium.

    Get PDF
    Intestinal crypt fission is a homeostatic phenomenon, observable in healthy adult mucosa, but which also plays a pathological role as the main mode of growth of some intestinal polyps. Building on our previous individual based model for the small intestinal crypt and on in vitro cultured intestinal organoids, we here model crypt fission as a budding process based on fluid mechanics at the individual cell level and extrapolated predictions for growth of the intestinal epithelium. Budding was always observed in regions of organoids with abundant Paneth cells. Our data support a model in which buds are biomechanically initiated by single stem cells surrounded by Paneth cells which exhibit greater resistance to viscoelastic deformation, a hypothesis supported by atomic force measurements of single cells. Time intervals between consecutive budding events, as simulated by the model and observed in vitro, were 2.84 and 2.62 days, respectively. Predicted cell dynamics was unaffected within the original crypt which retained its full capability of providing cells to the epithelium throughout fission. Mitotic pressure in simulated primary crypts forced upward migration of buds, which simultaneously grew into new protruding crypts at a rate equal to 1.03 days-1 in simulations and 0.99 days-1 in cultured organoids. Simulated crypts reached their final size in 4.6 days, and required 40 6.2 days to migrate to the top of the primary crypt. The growth of the secondary crypt is independent of its migration along the original crypt. Assuming unrestricted crypt fission and multiple budding events, a maximal growth rate of the intestinal epithelium of 0.10 days-1 43 is predicted and thus approximately 22 days are required for a 10-fold increase of polyp size. These predictions are in agreement with the time reported to develop macroscopic adenomas in mice after loss of Apc in intestinal stem cells

    Distance-dependent association of affect with pacing strategy in cycling time trials.

    Get PDF
    The psychological construct of affect is proposed to significantly contribute to pacing decisions during exercise. Borg’s RPE scale, another important regulator of work rate, is criticized as an inadequate measure of the multiple perceptual responses experienced. This study aimed to examine power output distribution and associated changes in affect, self-efficacy, perceptual cues, HR, and respiratory gases during both 16.1- and 40-km self-paced cycling time trials (TT). Secondly, the differentiation between physical perceptions of exertion and sense of effort in self-paced exercise was investigated. Method: Fifteen trained male cyclists completed 16.1- and 40-km TT using a CompuTrainer cycle ergometer. Time, power output distribution, affect, self-efficacy, physical RPE (P-RPE), task effort and awareness (TEA), HR, and respiratory gases were measured throughout each TT. Linear mixed models explored associations of these variables with power output distribution and the relationship between P-RPE and TEA. Results: Similar pacing strategies were adopted in the 16.1- and 40-km TT (P = 0.31), and the main effects were found for affect (P = 0.001) and RER (P G 0.001). Interactions between affect (P = 0.037) and RER (P = 0.004), with condition, indicated closer associations with power output distribution in 16.1 km than that in 40 km TT. P-RPE was not significantly different from TEA (P = 0.053). Conclusion: A significant association between affect and power output distribution suggests that affective responses are task dependent even in self-paced exercise, and a greater association is demonstrated in higher intensity, 16.1 km TT. Furthermore, physical perceptions of exertion are not clearly differentiated from the sense of effort in self-paced exercise

    Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches

    Get PDF
    Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in ‘first generation’ biofuels was observed, however ‘food competition’ concerns have generated interest in second generation biofuels (SGBs). These SGBs can be produced from co-products (e.g. cereal straw) or energy crops (e.g. miscanthus), with the former largely negating food competition concerns. In order to assess the sustainability of feedstock supply for SGBs, the financial, environmental and energy costs and benefits of the farm system must be quantified. Previous research has captured financial costs and benefits through linear programming (LP) approaches, whilst environmental and energy metrics have been largely been undertaken within life cycle analysis (LCA) frameworks. Assessing aspects of the financial, environmental and energy sustainability of supplying co-product second generation biofuel (CPSGB) feedstocks at the farm level requires a framework that permits the trade-offs between these objectives to be quantified and understood. The development of a modelling framework for Managing Energy and Emissions Trade-Offs in Agriculture (MEETA Model) that combines bio-economic process modelling and LCA is presented together with input data parameters obtained from literature and industry sources. The MEETA model quantifies arable farm inputs and outputs in terms of financial, energy and emissions results. The model explicitly captures fertiliser: crop-yield relationships, plus the incorporation of straw or removal for sale, with associated nutrient impacts of incorporation/removal on the following crop in the rotation. Key results of crop-mix, machinery use, greenhouse gas (GHG) emissions per kg of crop product and energy use per hectare are in line with previous research and industry survey findings. Results show that the gross margin – energy trade-off is £36 GJ−1, representing the gross margin forgone by maximising net farm energy cf. maximising farm gross margin. The gross margin–GHG emission trade-off is £0.15 kg−1 CO2 eq, representing the gross margin forgone per kg of CO2 eq reduced when GHG emissions are minimised cf. maximising farm gross margin. The energy–GHG emission trade-off is 0.03 GJ kg−1 CO2 eq quantifying the reduction in net energy from the farm system per kg of CO2 eq reduced when minimising GHG emissions cf. maximising net farm energy. When both farm gross margin and net farm energy are maximised all the cereal straw is baled for sale. Sensitivity analysis of the model in relation to different prices of cereal straw shows that it becomes financially optimal to incorporate wheat straw at price of £11 t−1 for this co-product. Local market conditions for straw and farmer attitudes towards incorporation or sale of straw will impact on the straw price at which farmers will supply this potential bioenergy feedstock and represent important areas for future research

    The role of sense of effort on self-selected cycling power output

    Get PDF
    PURPOSE: We explored the effects of the sense of effort and accompanying perceptions of peripheral discomfort on self-selected cycle power output under two different inspired O2 fractions. METHODS: On separate days, eight trained males cycled for 5 min at a constant subjective effort (sense of effort of '3' on a modified Borg CR10 scale), immediately followed by five 4-s progressive submaximal (sense of effort of "4, 5, 6, 7, and 8"; 40 s between bouts) and two 4-s maximal (sense of effort of "10"; 3 min between bouts) bouts under normoxia (NM: fraction of inspired O2 [FiO2] 0.21) and hypoxia (HY: [FiO2] 0.13). Physiological (Heart Rate, arterial oxygen saturation (SpO2) and quadriceps Root Mean Square (RMS) electromyographical activity) and perceptual responses (overall peripheral discomfort, difficulty breathing and limb discomfort) were recorded. RESULTS: Power output and normalized quadriceps RMS activity were not different between conditions during any exercise bout (p > 0.05) and remained unchanged across time during the constant-effort cycling. SpO2 was lower, while heart rate and ratings of perceived difficulty breathing were higher under HY, compared to NM, at all time points (p < 0.05). During the constant-effort cycling, heart rate, overall perceived discomfort, difficulty breathing and limb discomfort increased with time (all p < 0.05). All variables (except SpO2) increased along with sense of effort during the brief progressive cycling bouts (all p < 0.05). During the two maximal cycling bouts, ratings of overall peripheral discomfort displayed an interaction between time and condition with ratings higher in the second bout under HY vs. NM conditions. CONCLUSION: During self-selected, constant-effort and brief progressive, sub-maximal, and maximal cycling bouts, mechanical work is regulated in parallel to the sense of effort, independently from peripheral sensations of discomfort

    Will the Conscious–Subconscious Pacing Quagmire Help Elucidate the Mechanisms of Self-Paced Exercise? New Opportunities in Dual Process Theory and Process Tracing Methods

    Get PDF
    The extent to which athletic pacing decisions are made consciously or subconsciously is a prevailing issue. In this article we discuss why the one-dimensional conscious–subconscious debate that has reigned in the pacing literature has suppressed our understanding of the multidimensional processes that occur in pacing decisions. How do we make our decisions in real-life competitive situations? What information do we use and how do we respond to opponents? These are questions that need to be explored and better understood, using smartly designed experiments. The paper provides clarity about key conscious, preconscious, subconscious and unconscious concepts, terms that have previously been used in conflicting and confusing ways. The potential of dual process theory in articulating multidimensional aspects of intuitive and deliberative decision-making processes is discussed in the context of athletic pacing along with associated process-tracing research methods. In attempting to refine pacing models and improve training strategies and psychological skills for athletes, the dual-process framework could be used to gain a clearer understanding of (1) the situational conditions for which either intuitive or deliberative decisions are optimal; (2) how intuitive and deliberative decisions are biased by things such as perception, emotion and experience; and (3) the underlying cognitive mechanisms such as memory, attention allocation, problem solving and hypothetical thought

    Goal Orientation and the Presence of Competitors Influence Cycling Performance

    Get PDF
    Introduction: The aim of this study was to investigate time-trial (TT) performance in the presence of one competitor and in a group with competitors of various abilities. Methods: In a randomized order, 24 participants performed a 5-km cycling TT individually (IND), with one similarly matched participant (1v1), and in a group of four participants (GRP). For the GRP session, two pairs of matched participants from the 1v1 session were used. Pairs were selected so that TT duration was considered either inferior (INF) or superior (SUP) compared to the other pair of participants. Results: Overall, TT duration (P = 0.86, ηp2 p2 = 0.16). For INF, a large effect size for both mean power (P = 0.07, ηp2 = 0.15) and HR (P = 0.05, ηp2 = 0.16), indicates greatest effort in GRP. Pacing behavior was affected by competition but similar in 1v1 and GRP for SUP, while large effect sizes indicate an increased power output in the initial 750-m for INF in GRP. Additionally, for INF, there was a significant correlation with ego orientation for an increase in TT duration between the GRP session and both the IND (r = 0.43, P = 0.04) and 1v1 (r = 0.54, P = 0.01) sessions. Conclusion: For INF participants, intensity was increased when competing in GRP. Yet, the presence of the SUP competitors resulted in lesser performance improvements for ego oriented INF participants. These findings demonstrate that consideration should be given to the ability of competitors in a group setting to provide adequate motivation. © 2018 Hibbert, Billaut, Varley and Polman
    corecore