95 research outputs found

    HELP: the Herschel Extragalactic Legacy Project

    Get PDF
    We present the Herschel Extragalactic Legacy Project (HELP). This project collates, curates, homogenizes, and creates derived data products for most of the premium multiwavelength extragalactic data sets. The sky boundaries for the first data release cover 1270 deg2 defined by the Herschel SPIRE extragalactic survey fields; notably the Herschel Multi-tiered Extragalactic Survey (HerMES) and the Herschel Atlas survey (H-ATLAS). Here, we describe the motivation and principal elements in the design of the project. Guiding principles are transparent or ‘open’ methodologies with care for reproducibility and identification of provenance. A key element of the design focuses around the homogenization of calibration, meta data, and the provision of information required to define the selection of the data for statistical analysis. We apply probabilistic methods that extract information directly from the images at long wavelengths, exploiting the prior information available at shorter wavelengths and providing full posterior distributions rather than maximum-likelihood estimates and associated uncertainties as in traditional catalogues. With this project definition paper, we provide full access to the first data release of HELP; Data Release 1 (DR1), including a monolithic map of the largest SPIRE extragalactic field at 385 deg2 and 18 million measurements of PACS and SPIRE fluxes. We also provide tools to access and analyse the full HELP data base. This new data set includes far-infrared photometry, photometric redshifts, and derived physical properties estimated from modelling the spectral energy distributions over the full HELP sky. All the software and data presented is publicly available

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    MIGHTEE-Hi: Evolution of Hi Scaling Relations of Star-forming Galaxies at z < 0.5*

    Get PDF
    We present the first measurements of H I galaxy scaling relations from a blind survey at z > 0.15. We perform spectral stacking of 9023 spectra of star-forming galaxies undetected in H I at 0.23 < z < 0.49, extracted from MIGHTEE-H I Early Science data cubes, acquired with the MeerKAT radio telescope. We stack galaxies in bins of galaxy properties (stellar mass M *, star formation rateSFR, and specific star formation rate sSFR, with sSFR ≡ M */SFR), obtaining ≳5σ detections in most cases, the strongest H I-stacking detections to date in this redshift range. With these detections, we are able to measure scaling relations in the probed redshift interval, finding evidence for a moderate evolution from the median redshift of our sample z med ~ 0.37 to z ~ 0. In particular, low-M * galaxies ( {\mathrm{log}}_{10}({M}_{* }/{M}_{\odot })\sim 9 )experienceastrongHIdepletion( 0.5dexinlog10(MHI/M⊙) ), while massive galaxies ( {\mathrm{log}}_{10}({M}_{* }/{M}_{\odot })\sim 11$ ) keep their H I mass nearly unchanged. When looking at the star formation activity, highly star-forming galaxies evolve significantly in M H I (f H I, where f H I ≡ M H I/M *) at fixed SFR (sSFR), while at the lowest probed SFR (sSFR) the scaling relations show no evolution. These findings suggest a scenario in which low-M * galaxies have experienced a strong H I depletion during the last ~5 Gyr, while massive galaxies have undergone a significant H I replenishment through some accretion mechanism, possibly minor mergers. Interestingly, our results are in good agreement with the predictions of the SIMBA simulation. We conclude that this work sets novel important observational constraints on galaxy scaling relations

    The effect of environmental chemicals on the tumor microenvironment

    Get PDF
    Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis

    HELP: The Herschel Extragalactic Legacy Project

    Get PDF
    We present the Herschel Extragalactic Legacy Project (HELP). This project collates, curates, homogenises, and creates derived data products for most of the premium multi-wavelength extragalactic data sets. The sky boundaries for the first data release cover 1270 deg2 defined by the Herschel SPIRE extragalactic survey fields; notably the Herschel Multi-tiered Extragalactic Survey (HerMES) and the Herschel Atlas survey (H-ATLAS). Here, we describe the motivation and principal elements in the design of the project. Guiding principles are transparent or “open” methodologies with care for reproducibility and identification of provenance. A key element of the design focuses around the homogenisation of calibration, meta data and the provision of information required to define the selection of the data for statistical analysis. We apply probabilistic methods that extract information directly from the images at long wavelengths, exploiting the prior information available at shorter wavelengths and providing full posterior distributions rather than maximum likelihood estimates and associated uncertainties as in traditional catalogues. With this project definition paper we provide full access to the first data release of HELP; Data Release 1 (DR1), including a monolithic map of the largest SPIRE extragalactic field at 385 deg2 and 18 million measurements of PACS and SPIRE fluxes. We also provide tools to access and analyse the full HELP database. This new data set includes far-infrared photometry, photometric redshifts, and derived physical properties estimated from modelling the spectral energy distributions over the full HELP sky. All the software and data presented is publicly available

    Life and the Technical Transformation of Différance: Stiegler and the Noopolitics of Becoming Non-Inhuman

    Get PDF
    Through a re-articulation of Derridean différance, Bernard Stiegler claims that the human is defined by an originary default that displaces all psychic and social life onto technical supplements. His philosophy of technics re-articulates the logic of the supplement as concerning both human reflexivity and its supports, and the history of the différance of life itself. This has been criticised for reducing Derrida’s work to a metaphysics of presence, and for instituting a humanism of the relation to the inorganic. By refuting these claims, this article will show that Stiegler’s doubling of différance enables him to articulate the human as constituted by both the individuation characteristic of ‘life’, and that of a technical, psychic and collective individuation. Putting forward a reading of the logic of the trace in life, and emphasising the aspects of Leroi-Gourhan, Simondon, and Canguilhem that Stiegler uses in his reading of Derrida, I will demonstrate that the political stakes of adaption and adoption in Noo-Politics require this re-articulation of différance. Technics shapes the human future, arising from this differential mutation; marking the invention of the human as the site of the political

    HELP: the Herschel Extragalactic Legacy Project

    Get PDF
    We present the Herschel Extragalactic Legacy Project (HELP). This project collates, curates, homogenises, and creates derived data products for most of the premium multi-wavelength extragalactic data sets. The sky boundaries for the first data release cover 1270 deg2 defined by the Herschel SPIRE extragalactic survey fields; notably the Herschel Multi-tiered Extragalactic Survey (HerMES) and the Herschel Atlas survey (H-ATLAS). Here, we describe the motivation and principal elements in the design of the project. Guiding principles are transparent or “open” methodologies with care for reproducibility and identification of provenance. A key element of the design focuses around the homogenisation of calibration, meta data and the provision of information required to define the selection of the data for statistical analysis. We apply probabilistic methods that extract information directly from the images at long wavelengths, exploiting the prior information available at shorter wavelengths and providing full posterior distributions rather than maximum likelihood estimates and associated uncertainties as in traditional catalogues. With this project definition paper we provide full access to the first data release of HELP; Data Release 1 (DR1), including a monolithic map of the largest SPIRE extragalactic field at 385 deg2 and 18 million measurements of PACS and SPIRE fluxes. We also provide tools to access and analyse the full HELP database. This new data set includes far-infrared photometry, photometric redshifts, and derived physical properties estimated from modelling the spectral energy distributions over the full HELP sky. All the software and data presented is publicly available

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore