120 research outputs found

    Quantifying and Understanding the Tropical Peatlands of the Central Congo Basin

    Get PDF
    The world’s second largest tropical wetland is found in the central Congo Basin. Ambiguous grey-literature reports of peat, coupled with the large area of wetland suggest this region may be a globally significant carbon store. In this thesis I aim to establish whether this region, known as the Cuvette Centrale, harbours significant peatlands, to characterise them, compute the first estimate of peatland extent and C stocks based on ground data, to determine the factors which led to peat initiation and their maintenance today. Fieldwork within the Likouala Department, Republic of Congo, confirmed widespread peat presence. Peat-vegetation associations were recorded in the field, which combined with remotely sensed radar, optical and elevation data was used to estimate the area of peatland; at 145,529 km2 (95% CI, 134,720-154,732 km2), the Cuvette Centrale is the single most extensive tropical peatland complex in the world. The peat is shallow (maximum depth: 5.90 m) and characterised as non-domed, nutrient poor systems, occupying large interfluvial basins. Area measurements combined with those of peat depth, bulk density and C concentration, collected in the field, suggest a total peat C stock of 30.2 Pg C (90% CI, 27.8-32.7 Pg C). This increases the current global tropical peatland C stock estimate from 88.6 Pg C to 115.8 Pg C. Radiocarbon dates show peat initiated early Holocene (dated from 10555 cal yrs BP onwards), with a possible Mid- to Late-Holocene hiatus in peat accumulation, with both likely linked to changes in regional precipitation. Pressure transducers measuring the peatland water tables, rainfall estimates and water source geochemistry imply that the peatlands today are predominantly rain-fed systems. My discovery that the Congo Basin, not tropical Asia, is home to the world’s largest single peatland complex elevates the current global peatland C stock estimate from 88.6 Pg C to 115.8 Pg C and will require new regional management plans if the destructive fate of tropical Asian peatlands are to be avoided in central Africa

    Microrna response of primary human macrophages to Arcobacter Butzleri infection

    Get PDF
    The role of microRNAs (miRNAs) in infectious diseases is becoming more and more apparent, and the use of miRNAs as a diagnostic tool and their therapeutic application has become the major focus of investigation. The aim of this study was to identify miRNAs involved in the immune signaling of macrophages in response to Arcobacter (A.) butzleri infection, an emerging foodborne pathogen causing gastroenteritis. Therefore, primary human macrophages were isolated and infected, and miRNA expression was studied by means of RNAseq. Analysis of the data revealed the expression of several miRNAs, which were previously associated with bacterial infections such as miR-155, miR-125, and miR-212. They were shown to play a key role in Toll-like receptor signaling where they act as fine-tuners to establish a balanced immune response. In addition, miRNAs which have yet not been identified during bacterial infections such as miR-3613, miR-2116, miR-671, miR-30d, and miR-629 were differentially regulated in A. butzleri-infected cells. Targets of these miRNAs accumulated in pathways such as apoptosis and endocytosis — processes that might be involved in A. butzleri pathogenesis. Our study contributes new findings about the interaction of A. butzleri with human innate immune cells helping to understand underlying regulatory mechanisms in macrophages during infection

    Assessment of disease lesion removal as a method to control chronic Montipora white syndrome

    Get PDF
    Coral colonies in Ka–ne‘ohe Bay, Hawai‘i (USA), are afflicted with the tissue loss disease chronic Montipora white syndrome (cMWS). Here we show that removal of chronic disease lesions is a potential method to slow the progression of cMWS in M. capitata. Over the 24 wk observation period, treatment colonies lost almost half the amount of tissue that was lost by control colonies. The percentage of tissue loss at each sampling interval (mean ± SEM; treatment: 1.17 ± 0.47%, control: 2.25 ± 0.63%) and the rate of tissue loss per day (treatment: 0.13 ± 0.04%, control: 0.27 ± 0.08%) were both significantly lower on treated colonies than control colonies. While lesion removal stopped tissue loss at the initial infection site, which allowed colony healing, it did not prevent re-infection; in all but one of the treated colonies, new cMWS lesions appeared in other areas of the colony but not around the treatment margins. Additionally, the rate of new infections was similar between treatment and control colonies, indicating that physical injury from lesion removal did not appear to increase cMWS susceptibility. These results indicate that lesion removal reduced morbidity in M. capitata exhibiting cMWS but did not stop the disease

    First Record of Black Band Disease in the Hawaiian Archipelago: Response, Outbreak Status, Virulence, and a Method of Treatment

    Get PDF
    A high number of coral colonies, Montipora spp., with progressive tissue loss were reported from the north shore of Kaua‘i by a member of the Eyes of the Reef volunteer reporting network. The disease has a distinct lesion (semi-circular pattern of tissue loss with an adjacent dark band) that was first observed in Hanalei Bay, Kaua‘i in 2004. The disease, initially termed Montipora banded tissue loss, appeared grossly similar to black band disease (BBD), which affects corals worldwide. Following the initial report, a rapid response was initiated as outlined in Hawai‘i’s rapid response contingency plan to determine outbreak status and investigate the disease. Our study identified the three dominant bacterial constituents indicative of BBD (filamentous cyanobacteria, sulfate-reducing bacteria, sulfide-oxidizing bacteria) in coral disease lesions from Kaua‘i, which provided the first evidence of BBD in the Hawaiian archipelago. A rapid survey at the alleged outbreak site found disease to affect 6-7% of the montiporids, which is higher than a prior prevalence of less than 1% measured on Kaua‘i in 2004, indicative of an epizootic. Tagged colonies with BBD had an average rate of tissue loss of 5.7 cm2/day over a two-month period. Treatment of diseased colonies with a double band of marine epoxy, mixed with chlorine powder, effectively reduced colony mortality. Within two months, treated colonies lost an average of 30% less tissue compared to untreated controls

    Vibrio coralliilyticus Strain OCN008 Is an Etiological Agent of Acute Montipora White Syndrome

    Get PDF
    Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited number of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in Ka ne‘ohe Bay, Hawai‘i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 107 and 108 CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. Temperature-dependent bleaching, which has been observed with the V. coralliilyticus type strain BAA-450, was not observed during infection with OCN008. A comparison of the OCN008 genome to the genomes of pathogenic V. coralliilyticus strains BAA-450 and P1 revealed similar virulence-associated genes and quorum-sensing systems. Despite this genetic similarity, infections of M. capitata by OCN008 do not follow the paradigm for V. coralliilyticus infections established by the type strain

    Pseudoalteromonas piratica sp. nov., a budding, prosthecate bacterium from diseased Montipora capitata, and emended description of the genus Pseudoalteromonas

    Get PDF
    A Gram-stain-negative, motile, rod-shaped bacterium designated OCN003T was cultivated from mucus taken from a diseased colony of the coral Montipora capitata in Kāne‘ohe Bay, O‘ahu, Hawai‘i. Colonies of OCN003T were pale yellow, 1–3 mm in diameter, convex, smooth and entire. The strain was heterotrophic, strictly aerobic and strictly halophilic. Cells of OCN003T produced buds on peritrichous prosthecae. Growth occurred within the pH range of 5.5 to 10, and the temperature range of 14 to 39 °C. Major fatty acids were 16 : 1!7c, 16 : 0, 18 : 1!7c, 17 : 1!8c, 12 : 0 3-OH and 17 : 0. Phylogenetic analysis of 1399 nucleotides of the 16S rRNA gene nucleotide sequence and a multi-locus sequence analysis of three genes placed OCN003T in the genus Pseudoalteromonas and indicated that the nearest relatives described are Pseudoalteromonas spongiae, P. luteoviolacea, P. ruthenica and P. phenolica (97–99 % sequence identity). The DNA G+C content of the strain’s genome was 40.0 mol%. Based on in silico DNA–DNA hybridization and phenotypic differences from related type strains, we propose that OCN003T represents the type strain of a novel species in the genus Pseudoalteromonas, proposed as Pseudoalteromonas piratica sp. nov. OCN003T (=CCOS1042T =CIP 111189T ). An emended description of the genus Pseudoalteromonas is presented

    Definitions and reliability assessment of elementary ultrasound lesions in giant cell arteritis: a study from the OMERACT Large Vessel Vasculitis Ultrasound Working Group

    Get PDF
    Objectives: To define the elementary ultrasound (US) lesions in giant cell arteritis (GCA) and to evaluate the reliability of the assessment of US lesions according to these definitions in a web-based reliability exercise. Methods: Potential definitions of normal and abnormal US findings of temporal and extracranial large arteries were retrieved by a systematic literature review. As a subsequent step, a structured Delphi exercise was conducted involving an expert panel of the Outcome Measures in Rheumatology (OMERACT) US Large Vessel Vasculitis Group to agree definitions of normal US appearance and key elementary US lesions of vasculitis of temporal and extracranial large arteries. The reliability of these definitions on normal and abnormal blood vessels was tested on 150 still images and videos in a web-based reliability exercise. Results: Twenty-four experts participated in both Delphi rounds. From originally 25 statements, nine definitions were obtained for normal appearance, vasculitis and arteriosclerosis of cranial and extracranial vessels. The 'halo' and 'compression' signs were the key US lesions in GCA. The reliability of the definitions for normal temporal and axillary arteries, the 'halo' sign and the 'compression' sign was excellent with inter-rater agreements of 91-99% and mean kappa values of 0.83-0.98 for both inter-rater and intra-rater reliabilities of all 25 experts. Conclusions: The 'halo' and the 'compression' signs are regarded as the most important US abnormalities for GCA. The inter-rater and intra-rater agreement of the new OMERACT definitions for US lesions in GCA was excellent

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    CERT1 mutations perturb human development by disrupting sphingolipid homeostasis

    Get PDF
    Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.This work was supported by the National Institute of Neurological Disorders and Stroke (NINDS), NIH (R01NS109858, to VAG); the Paul A. Marks Scholar Program at the Columbia University Vagelos College of Physicians and Surgeons (to VAG); a TIGER grant from the TAUB Institute at the Columbia Vagelos College of Physicians and Scientists (to VAG); the Swiss National Science Foundation (SNF 31003A-179371, to TH); the European Joint Program on Rare Diseases (EJP RD+SNF 32ER30-187505, to TH); the Swiss Cancer League (KFS-4999-02-2020, to GD); the EPFL institutional fund (to GD); the Kristian Gerhard Jebsen Foundation (to GD); the Swiss National Science Foundation (SNSF) (310030_184926, to GD); the Swiss Foundation for Research on Muscle Disease (FSRMM, to MAL); the Natural Science and Engineering Research Council of Canada (Discovery Grant 2020-04241, to JEB); the Italian Ministry of Health Young Investigator Grant (GR-2011-02347754, to EL); the Fondazione Istituto di Ricerca Pediatrica – Città della Speranza (18-04, to EL); the Wroclaw Medical University (SUB.E160.21.004, to RS); the National Science Centre, Poland (2017/27/B/NZ5/0222, to RS); Telethon Undiagnosed Diseases Program (TUDP) (GSP15001); the Temple Street Foundation/Children’s Health Foundation Ireland (RPAC 19-02, to IK); the Deutsche Forschungsgemeinschaft (DFG) (PO2366/2–1, to BP); the Instituto de Salud Carlos III, Spain (to ELM, EBS, and BMD); the National Natural Science Foundation of China (81871079 and 81730036, to HG and KX); and the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH (R01 DK115574, to SSC).The DEFIDIAG study is funded by grants from the French Ministry of Health in the framewok of the national French initiative for genomic medicine. The funders were not involved in the study design, data acquisition, analysis, or writing of the manuscript. Funding for the DECIPHER project was provided by Wellcome. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between Wellcome and the Department of Health, and the Wellcome Sanger Institute (grant number WT098051). The views expressed in this publication are those of the author(s) and not necessarily those of Wellcome or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South REC, and GEN/284/12, granted by the Republic of Ireland REC). The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network.S
    corecore