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SUMMARY 
Long-distance RNA transport enables local protein synthesis at metabolically-
active sites distant from the nucleus. This process ensures an appropriate spatial 
organization of proteins, vital to polarized cells such as neurons. Here, we 
present a mechanism for RNA transport in which RNA granules “hitchhike” on 
moving lysosomes. In vitro biophysical modeling, live-cell microscopy, and 
unbiased proximity labeling proteomics reveal that annexin A11 (ANXA11), an 
RNA granule-associated phosphoinositide-binding protein, acts as a molecular 
tether between RNA granules and lysosomes. ANXA11 possesses an N-terminal 
low complexity domain, facilitating its phase separation into membraneless RNA 
granules, and a C-terminal membrane binding domain, enabling interactions with 
lysosomes. RNA granule transport requires ANXA11, and amyotrophic lateral 
sclerosis (ALS) mutations impair RNA granule transport in neurons by disrupting 
their interactions with lysosomes. Thus, ANXA11 mediates neuronal RNA 
transport by tethering RNA granules to actively-transported lysosomes, 
performing a critical cellular function that is disrupted in ALS. 
 

INTRODUCTION 
Many proteins within cells are translated locally rather than trafficked from their 

site of synthesis to their final destination. Neurons, which have long axons and 

dendrites, rely on local translation for numerous cell-specific functions (Glock et al., 

2017; Jung et al., 2012; Krichevsky et al., 2001; Leung et al., 2006; Martin and 

Ephrussi, 2009; Wong et al., 2017; Yao et al., 2006; Zheng et al., 2001). Local 

translation requires long-distance transport of RNA from the nucleus to distal parts of 

the cell.  

For membrane-bound organelles such as mitochondria and endosomes, the 

microtubule-based motors kinesin and dynein interact either directly or indirectly with 

membrane proteins and lipids to enable long-range transport. RNAs, however, do not 

usually exist in membrane-enclosed structures. Instead, they interact with with RNA-

binding proteins (RBPs), which self-organize into phase separated structures called 

RNA granules (Weber and Brangwynne, 2012). RNA granules have long been observed 
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to traffic within neuronal axons and dendrites (Knowles et al., 1996; Gopal et al., 2017). 

While their transport requires both microtubules and motor proteins, how membraneless 

RNA granules are tethered to transport machinery remains incompletely understood 

(Clark et al. 2007; Davidovic et al. 2007; Dictenberg et al. 2008; Dienstbier et al. 2009; 

Dix et al. 2013; Gaspar et al. 2016; Gagnon et al. 2013). 

Mutations in RBPs, molecular motors, and microtubule components have all 

been linked to neurological diseases, highlighting the critical contributions of RNA 

transport and metabolism to long-term neuronal integrity (Baird, 2013; Bakthavachalu et 

al.,2018; Chevalier-Larsen and Holzbaur, 2006; Fallini et al., 2011; Hirokawa et al., 

2010; Puls et al., 2003; Ramaswami et al. 2013). In particular, numerous causative 

mutations for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), two 

related adult-onset neurodegenerative diseases, fall within these gene groups (Van 

Deerlin et al., 2008; Kim et al., 2013; Münch et al., 2005; Nicolas et al., 2018; Vance et 

al., 2009). The bulk of other genes linked to familial ALS/FTD encode proteins that 

regulate lysosomal biology (Baker et al., 2006; Guerreiro et al., 2015; Pottier et al., 

2015; Renton et al., 2011; Shi et al., 2018; Skibinski et al., 2005; Ward et al., 2017). 

Lysosomes and lysosome-related organelles are coupled to motor proteins through 

well-characterized adapter proteins, and like RNA granules, lysosomes traffic long 

distances within neuronal processes (Farías et al., 2017; Fu and Holzbaur, 2014; Pu et 

al., 2015). 

Recently, it has become clear that not all cargos directly interact with motor 

proteins during long-range transport. Rather, some cargos are indirectly transported 

along microtubule networks by docking onto other membrane-bound organelles such as 

endosomes, a process known as “hitchhiking” (Guimaraes et al., 2015; Salogiannis et al 

2016; Salogiannis and Reck-Peterson, 2017). Endosomal hitchhiking appears to be the 

primary mechanism by which peroxisomes, lipid droplets, and ER travel long-distances 

within filamentous fungi. Interestingly, RNA granules also hitchhike on moving 

endosomes in filamentous fungi during long-distance trafficking, hinting at the possibility 

of similar phenomena in higher-order organisms (Baumann et al., 2012; Higuchi et al 

2014; Pohlmann et al., 2015).  
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In this study, we show that RNA granules hitchhike on lysosomes for long-

distance trafficking in mammalian cells. Using a combination of proximity labeling 

proteomics, live-cell imaging, and in vitro assays, we then identify the ALS-associated 

protein ANXA11 as a molecular tether that can dynamically couple RNA granules with 

lysosomes. ALS-associated mutations in ANXA11 disrupt docking between RNA 

granules and lysosomes, consequently impeding RNA granule transport in neurons in 

vitro and in vivo. Together, these findings identify the lysosome as a key player in 

neuronal RNA transport, characterize how ANXA11 enables interactions between 

membraneless RNA granules and lysosomes, and provide mechanistic evidence for the 

involvement of altered RNA transport in ALS pathogenesis. 

 

RESULTS 
RNA granules hitchhike on motile lysosomes in mammalian cells 

Using live cell microscopy, we explored whether RNA granules could move within 

mammalian cells through association with motile, membranous organelles. Following 

heat shock, G3BP1-labeled RNA granules predominately co-localized with markers for 

lysosomes (LAMP1) and ER (SEC61) in U2OS cells (Figure1A, Supplemental Figure 

1A, B), and co-trafficked with lysosomes (Figure 1B, Supplemental Figure 1C, D, 

Supplemental Video 1). Lysosomes and juxta-positioned RNA granules moved along 

microtubules, and their motility was blocked by nocodazole-induced microtubule 

depolymerization (Figure 1C and Supplemental Figure 1E,F). Thus, stress-induced RNA 

granules co-traffic with lysosomes during microtubule-dependent transport. 

 Next, we analyzed RNA granule and LAMP1 dynamics in cultured primary 

cortical neurons, which constitutively transport these structurs within axons. In neurons, 

LAMP1-positive vesicles include both degradative lysosomes and non-acidic endo-

lysosomes (Cheng et al., 2018; Farías et al., 2017), but for simplicity, we hereafter refer 

to all LAMP1 positive structures as lysosomes. Within axons, lysosomes co-trafficked 

with RNA granules labeled with G3BP1 (Sahoo et al. 2018), TDP-43 (Alami et al., 2014; 

Gopal et al., 2017), and CAPRIN1 (Nakayama et al., 2017) (Figure 1D, Supplemental 

Figure 1J, K). Lysosomes also co-trafficked with actin-MS2/MCP (Figure 1E, 

supplemental Figure 1I), a probe that labels actin mRNA, one of the most abundant 
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mRNAs in axons (Bassell et al., 1998). Of note, although most anterograde and 

retrograde moving RNA granules clearly co-trafficked with lysosomes (Figure 1D,E), 

only a fraction of lysosomes co-trafficked with RNA granules (Supplemental Figure 

1H,L,M). Inhibition of motor-dependent lysosomal movement blocked RNA granule 

transport (Figure 1D, E, Supplemental Figure 1N). These results confirm that trafficking 

of RNA granules and lysosomes during long-range axonal transport are intimately 

linked. 

 In confocal images, RNA granules and lysosomes were closely apposed (Figure 

1F, top panel). Correlative light-electron microscopy (CLEM) imaging of these structures 

confirmed that lysosomes and RNA granules were tightly associated, with no evidence 

of lysosomal engulfment of the RNA granule (as would be expected during 

autophagy)(Buchan et al., 2013) (Figure 1F, bottom image). These results support a 

model in which lysosomes serve as a vehicle for RNA granule transport, and suggest 

the presence of a molecular tether between RNA granules and lysosomes.   

 

Identification of ANXA11 as a mediator of RNA granule-lysosome associations  
To identify potential proteins that tether RNA granules to lysosomes, we used 

ascorbate peroxidase (APEX) proximity labeling proteomics (Hung et al., 2016) to label 

and catalog the interactome of LAMP1-positive lysosomes (LAMP1-APEX2 probe) in 

human iPSC-derived neurons (i3Neurons) (Fernandopulle et al., 2018) (Figure 2A, B). 

Immunofluorescence staining of biotinylated prey confirmed that we could successfully 

label proximal lysosome-interacting proteins in i3Neurons and axonal compartments 

(Figure 2C). We identified ~130 proteins as LAMP1-APEX2 prey by proteomic mass 

spectrometry in i3Neurons (using nuclear export signal APEX (NES-APEX2) as a spatial 

reference), representing proteins that are specifically associated with lysosomes (Figure 

2D). Gene Ontology-term analysis of these prey showed substantial labeling of 

lysosomal proteins, as expected, along with a significant enrichment of RNA granule-

associated proteins (Figure 2E). To identify proteins that might function as a molecular 

tether between lysosomes and RNA granules, we cross-referenced our list with a 

previously generated list of RNA granule interacting proteins that used G3BP1-APEX2 

as a bait (Markmiller et al., 2018) (Figure 2F). Through this analysis, we identified six 



 6 

putative interacting partners of both lysosomes and RNA granules. Of these, annexin 

A11 (ANXA11) was the highest-ranked lysosome-interacting protein based on LAMP1-

APEX2 proteomics. 

 Mutations in ANXA11 are associated with ALS, a neurodegenerative disease in 

which dysfunction of lysosomal and RNA granule biology play causal roles (Smith et al., 

2017; Tsai et al., 2018; Zhang et al., 2018a). We performed structural modeling of 

ANXA11 as a first step in its characterization (Figure 2G). ANXA11, like other annexin 

family members, contains four C-terminal calcium-dependent membrane-binding 

annexin domains. Unlike most other annexin family members, however, ANXA11 also 

has a long N-terminal low-complexity region (LCR) (Figure 2H). LCRs are common to 

RNA granule-associated proteins, and facilitate formation of transient phase-separated 

assemblies that shelter associated RNAs (Hyman and Brangwynne, 2011; Hyman et al., 

2014; Weber and Brangwynne, 2012). Thus, ANXA11 contains structural features that 

could enable both binding to lipid membranes (e.g., lysosomes) and intercalation within 

phase-separated RNA granules.  

We used a series of in vitro assays to characterize the biophysical properties of 

ANXA11. At high concentrations, or when incubated with 10% dextran (a molecular 

crowding agent), purified ANXA11 formed phase-separated droplets that grew in size 

and fused with each other over time (Figure 2I, Supplemental Figure 2A). A similar 

change occurred when ANXA11 was transitioned from 4oC to 25oC. We performed the 

same assays with purified ANXA11 N-terminus (amino acids 1-185; the LC region) and 

ANXA11 C-terminus (amino acids 186-502; the annexin region). As predicted by our 

structural models, the N-terminal LCR region of ANXA11 was necessary and sufficient 

for phase separation (Figure 2J). These results indicate that ANXA11 can form phase-

separated droplets similar to traditional RNA granule proteins, and that the N-terminus 

of ANXA11 confers this property.  

           We next investigated whether purified ANXA11 could bind membrane lipids. 

Structural modeling predicted that calcium binding conferred a positive surface charge 

to ANXA11’s annexin domains (Figure 2K), which could potentiate binding of ANXA11 to 

negatively-charged, membrane phospholipids. Using a protein lipid overlay assay, we 

found that ANXA11 bound several lysosome-enriched, negatively-charged 
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phosphatidylinositols in a Ca2+-dependent manner (Figure 2L). Three-dimensional lipid 

flotation lipid overlay assays confirmed that ANXA11 co-floated with PI(3,5)P2 containing 

liposomes (Figure 2M, N) and interacted with PI3P-containing liposomes in a Ca2+-

dependent manner (Fig. 2O). We further showed ANXA11 required PI3P to bind 

liposomes at physiological calcium concentrations (Fig. 2P, Q). Together, these in vitro 

studies demonstrate that ANXA11 possesses biophysical properties that enable it to 

interact with both RNA granules and lysosomes, consistent with structural predictions 

and unbiased proteomic results. 

 

ANXA11 interacts with both RNA granules and lysosomes in cells  
 Based on its structural and biophysical attributes, we speculated that ANXA11 

might incorporate into RNA granules through its phase separating properties and 

additionally interact with lysosomes through its lipid binding properties. Basic 

characteristics of phase-separated RNA granules in cells include dynamic structural 

associations (i.e., fission and fusion), rapid exchange between phase-separated and 

soluble states, and stress-induced oligomerization (i.e., “stress granule” formation) 

(Hyman and Brangwynne, 2011; Hyman et al., 2014). We found that ANXA11-mEmerald 

redistributed into spheroid structures following heat shock (Figure 3A). These stress-

induced structures had various liquid properties, including droplet fusion (Figure 3B, top 

panel) and rapid fluorescence recovery after photobleaching (Figure 3B, bottom panel 

and Figure 3C), the latter indicating rapid cycling of ANXA11 between phase-separated 

and soluble states. The N-terminal LC region of ANXA11 was sufficient for ANXA11 

puncta formation (Supplemental Figure 3A-C), consistent with its in vitro properties.  

 We then asked if ANXA11 co-localized with RNA stress granule markers in cells 

undergoing heat shock. Stress granules composed of G3BP1, TDP43 or mRNA labeled 

by Oligo-dT all contained ANXA11 signal (Figure 3D, Supplemental Figure 3D). 

Because the N-terminal LCR of ANXA11 conferred its phase separation properties, we 

speculated that this region also mediated interactions with RNA granules in cells. We 

found that the N-terminal LCR of ANXA11 was sufficient to localize mEmerald to stress 

granules in U2OS cells (albeit to a lower extent than full-length ANXA11), but that an 

ANXA11-mEmerald truncation mutant lacking the N-terminal LCR  was not (Figure 3E, 
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Supplemental 3E, 3F). These data indicate that ANXA11 incorporates into stress-

induced RNA granules following heat shock, that these granules represent 

heterogeneous, phase-separated assemblies, and that the N-terminal LCR of ANXA11 

is necessary and sufficient for RNA granule interactions. 

 We next examined whether ANXA11 interacted with lysosomes in living cells. 

Time-lapse imaging revealed that ANXA11-positive puncta localized to the surface of 

LAMP1-structures following heat shock in U2OS cells (Figure 3F and Supplemental 

Figure 3H) and primary neurons (Figure 3G, Supplemental 3G). Axonal ANXA11 puncta 

co-trafficked with lysosomes, as shown in kymographs (Figure 3H). As predicted by our 

structural modeling, the C-terminal annexin repeat domain was both necessary and 

sufficient for interactions between ANXA11 and lysosomes (Figure 3I). Taken together, 

these results indicate that ANXA11 interacts with both RNA granules and lysosomes 

within diverse cell types, and that these interactions are mediated by its N-terminal LCR 

and C-terminal annexin domains, respectively. 

 To further explore the interactive properties of lysosomes and ANXA11 in living 

cells, we used a FLIM-based FRET approach, which can be used to infer direct 

molecular interaction between two probes at nanometer scales. We found that the 

lifetime of the FRET donor ANXA11-mCerulean3 decreased (i.e., FRET efficiency 

increased) near the FRET acceptor LAMP1-YFP, suggesting that ANXA11 and 

lysosomes tightly associate with each other (Figure 3J). Interestingly, the FRET 

efficiency increased further in the presence of ML-SA1, a lysosomal calcium channel 

agonist (Figure 3J, K), suggesting that ANXA11 and lysosomes more strongly interact 

following Ca2+ release from lysosomes. Supporting this observation, treatment with 

BAPTA-AM, a selective, permeable Ca2+ chelator that removes free Ca2+ from the 

cytoplasm, decreased the FRET efficiency (Figure 3J,K). Treatment with YM201636, 

which inhibits the formation of PI(3,5)P2, also decreased the FRET efficiency, 

suggesting that ANXA11 and lysosomes depend on PI(3,5)P2 for their interaction (Figure 

3J,K). Therefore, the interaction between ANXA11 and lysosomal membranes in cells 

occurs in a calcium- and phospholipid- dependent manner.  
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ALS-associated mutations in ANXA11 disrupt RNA granule dynamics and 
interactions 

Since mutations in both the N- and C-terminal domains of ANXA11 are 

associated with familial ALS, we investigated whether these mutations altered 

properties of RNA granules in living cells. FRAP analysis of ANXA11 dynamics showed 

that granules containing p.D40G-ANXA11, p.R235Q-ANXA11 or p.R346C-ANXA11 

(Supplemental Figure 4A) had impaired fluorescence recovery relative to WT ANXA11 

(Figure 4A, B). This result suggests that ALS mutations cause ANXA11 to become more 

stably associated with RNA granules and/or impair their phase transitioning.  

To determine whether this effect was intrinsic to ANXA11, we performed in vitro 

assays using purified WT, p.D40G, and p.R346C forms of ANXA11. We transitioned the 

temperature between 4oC and 25oC over repeated cycles and observed the proteins’ 

ability to phase partition into droplets. Both p.D40G and p.R346C mutants exhibited 

accelerated phase transitioning from soluble protein to insoluble gels upon warming, 

and an impaired ability to recover into liquid states upon re-cooling (Figure 4C). 

Therefore, ALS-associated ANXA11 mutations promote phase transitions from liquid to 

more stable gel-like states within ANXA11 droplets.  

Next, we fused a light-induced oligomerization domain (CRY2-mCherry) to the N-

terminus of WT and mutant ANXA11 proteins (Opto-ANXA11), allowing us to precisely 

regulate assembly/disassembly of ANXA11 phase condensates using light. Exposure of 

wild-type Opto-ANXA11 to 488-nm light triggered multimerization faster than Opto-

mCherry (Figure 4D, 4E), and the N-terminal LCR of ANXA11 was necessary and 

sufficient for Opto-ANXA11 condensation (Supplemental Figure 4B, C). Thus, ANXA11 

potentiates light-induced phase condensation, similar to other RNA-granule proteins 

fused with CRY2 (Shin et al., 2017; Zhang et al., 2018b). All mutant Opto-ANXA11 

proteins tested formed condensates faster than WT-Opto-ANXA11 (Figure 4D, E). 

Moreover, mutant Opto-ANXA11 condensates disassembled substantially slower than 

WT-Opto-ANXA11 following discontinuation of 488-nm light stimulation (Figure 4D, F). 

Together, these results suggest that N- and C-terminal ALS-associated ANXA11 

mutations promote phase transitions from liquid-liquid droplets to gel-like states, and 

impair reversal of gel-like states once formed.    
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To test whether mutations in ANXA11 altered its ability to interact with RNA 

granules, we quantified the extent of co-localization of ANXA11 and its mutants with 

RNA granules following heat shock in living cells. Whereas the N-terminal p.D40G-

ANXA11 mutation had no effect on RNA granule co-localization, C-terminal p.R235Q-

ANXA11 and p.R346C-ANXA11 mutations dramatically reduced co-localization of 

ANXA11 with RNA granules (Figure 4G, H, Supplemental Figure 4D, E). ALS-

associated ANXA11 mutations also altered the phase transition properties of other RNA 

granule-associated proteins, slowing both FRAP kinetics of G3BP1 and the disassembly 

rate of G3BP1 granules following stress release (Supplemental Figure 4F-I). Thus, ALS-

associated mutations in ANXA11 interfere with ANXA11’s ability to interact and 

intercalate with phase-separated RNA granules, which subsequently impacts RNA 

granule properties. 

 
ALS-associated mutations in ANXA11 disrupt its interactions with lysosomes  
 We next asked whether ALS-associated ANXA11 mutations altered lysosome 

interactions. Light-induced oligomerization of Opto-ANXA11 caused rapid association of 

Opto-ANXA11 condensates with lysosomes (Figure 5A, B). The C-terminal annexin-

repeat domain of ANXA11 was necessary and sufficient for Opto-ANXA11 association 

with lysosomes (Supplemental Figure 5A, B). Notably, Opto-ANXA11 mutants harboring 

ALS-associated C-terminal mutations failed to interact with lysosomes (Figure 5A, B). 

C-terminal ALS-associated mutations also impaired associations between ANXA11-

mEmerald condensates and lysosomes following stress (Figure 5C, D). Therefore, as 

predicted by structural modeling, ANXA11 interacts with lysosomes through its C-

terminal domain, a process disrupted by ALS-associated C-terminal mutations.  

 We further tested whether ALS-associated mutations altered axonal co-trafficking 

of ANXA11 with lysosomes in cultured primary neurons. As predicted, mutations in the 

C-terminus of ANXA11 impaired ANXA11’s ability to interact with motile lysosomes in 

axons (Figure 5E, F) while having no substantial effect on lysosome trafficking 

(Supplemental Figure 5C). Taken together, these data suggest that ALS-associated C-

terminal mutations impair the ability of ANXA11 to associate with lysosomes, and both 
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C- and N-terminal mutations impact properties of ANXA11 within phase-separated 

structures. 

 
ANXA11 acts as an adaptor between RNA granules and lysosomes 

Since ANXA11 interacts with both RNA granules and lysosomes, we speculated 

that ANXA11 might function as a molecular tether to couple RNA granules with 

lysosomes. To explore this possibility, we expressed Opto-ANXA11 in U2OS cells and 

monitored lysosome and RNA granule dynamics using time-lapse confocal microscopy. 

We reasoned light-induced oligomerization of ANXA11 might facilitate the docking of 

RNA granules with lysosomes, since phase-separated ANXA11 has an increased affinity 

for both structures. When we stimulated Opto-ANXA11 expressing cells with 488 nm 

light, we saw G3BP1-labeled RNA granules associating with Opto-ANXA11-bound 

lysosomes (Figure 6A, Supplemental Figure 6A, Video 3), and an increase in the 

number of RNA granule-lysosome interactions (Supplemental Figure 6B).  

We then co-imaged ANXA11, RNA granules and lysosomes in heat-shocked 

U2OS cells to further define their spatial relationships. ANXA11 was present in the core 

of G3BP1-labeled RNA granules and additionally displayed a peripheral localization 

pattern that extended beyond the boundary of G3BP1 into the region labeled by LAMP1 

(Figure 6B), consistent with a potential tethering function. 

Next, we asked if ANXA11 was sufficient to promote interactions of RNA granules 

with lysosome-like vesicles in an in vitro reconstitution assay. We purified stress-

induced RNA granule cores from cells (Jain et al. 2016; Khong et al. 2017; Wheeler et 

al. 2017; Khong et al. 2018), and mixed these granules with PI3P-containing liposomes 

in the presence or absence of ANXA11 and/or calcium (Figure 6C).  In the absence of 

ANXA11 or calcium, G3BP1-positive RNA granules failed to interact with liposomes. 

However, addition of both ANXA11 and calcium promoted contact between G3BP1-

positive RNA granules and liposomes (Figure 6D, E). These results support a model in 

which ANXA11 directly functions as a molecular tether to facilitate binding of RNA 

granules to lysosomes.  

To determine if ANXA11 co-localized with co-motile RNA granules and lysosomes 

in axons, we performed time-lapse imaging of cultured rodent neurons. Similar to stress 
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granules, ANXA11 co-localized and co-trafficked with motile RNA granule/lysosome 

assemblies in axons (Figure 6F, Supplemental Video 4). 

We then asked if ANXA11 was necessary to facilitate axonal RNA 

granule/lysosomal hitchhiking. ANXA11 knockdown in primary rodent neurons 

(Supplemental Figure 6D) substantially impaired axonal RNA granule/lysosome 

hitchhiking (Figure 6G and H) without altering axonal lysosome transport itself 

(Supplemental Figure 6E). To determine if ANXA11 knockdown impaired RNA delivery 

to distal regions of the cell, we quantified levels of actin mRNA in growth cones using 

single molecule FISH (smFISH). We found that ANXA11 knockdown reduced levels of 

actin mRNA in growth cones, consistent with impaired long-distance axonal mRNA 

transport (Figure 6I, J). Together, these data indicate that ANXA11 is sufficient to 

facilitate tethering of RNA granules to lysosomes, and is necessary for axonal RNA 

granule hitchhiking and delivery of mRNA to distal locations within neurons. 

 
ALS-associated ANXA11 mutations disrupt RNA granule hitchhiking on 
lysosomes 

Because C-terminal mutations interfered with the ability of ANXA11 to interact 

with lysosomes, we tested whether these mutations disrupted RNA granule-lysosome 

interactions. Indeed, lysosomes made fewer contacts with RNA granules in cells 

expressing ANXA11 with C-terminal mutations (Supplemental Figure 6F-H). These 

findings predict that ALS-associated ANXA11 mutations, which interfere with the ability 

of ANXA11 to efficiently interact with RNA granules and lysosomes, also disrupt 

hitchhiking of RNA granules on lysosomes during transport. 

 We used live cell microscopy to test whether ANXA11 mutations altered RNA 

granule hitchhiking on lysosomes. In control neurons, ANXA11 co-trafficked with both 

mRNA (Figure 7A) and RNA granule markers (Supplemental Figure 7A, Video 4). As 

predicted, the C-terminal ALS-associated ANXA11 mutation p.R235Q drastically 

reduced the number of trafficking RNA granules on lysosomes in axons (Figure 7A,B 

and Supplemental 7B, Video 5). Importantly, mutant ANXA11 expression did not alter 

axonal lysosome transport itself (Supplemental Figure 5C). Similar to our observations 

in ANXA11 knockdown neurons, we found that ANXA11 mutations reduced levels of 
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actin mRNA in growth cones per smFISH imaging (Figure 7C, D). These data indicate 

that ALS-associated mutations impair axonal RNA granule transport, as well as delivery 

of mRNAs to distal regions of the cell. 

 To determine whether ANXA11 mutations altered RNA granule axonal trafficking 

in vivo, we co-imaged lysosomes, ANXA11 and CAPRIN1 (an axonal RNA granule 

protein) in axons of live zebrafish neurons (Figure 7E). Both anterograde- and 

retrograde-moving RNA granules co-trafficked with lysosomes (Figure 7F, Supplemental 

Video 6), and numerous motile RNA granules also co-localized with detectable levels of 

ANXA11 (Figure 7G, Supplemental Video 7). Similar to observations in primary rat 

neurons, ALS-associated ANXA11 mutations interfered with RNA granule motility 

(Figure 7H, Supplemental Figure E-G). Therefore, in primary rat neurons and in an in 

vivo zebrafish model, ANXA11 co-localizes with RNA granules and lysosomes during 

axonal transport. Moreover, ALS-associated ANXA11 mutations disrupt this trafficking by 

preventing RNA granule hitchhiking on lysosomes. 

 

DISCUSSION 
 Polarized cells such as neurons rely on active, microtubule-directed RNA 

transport to facilitate local protein translation at subcellular locations far from the 

nucleus. Here, we discovered that membraneless RNA granules hitchhike on moving 

lysosomes during long-distance transport in both non-polarized cells and neurons, 

consistent with similar recent observations by others (Gershoni-Emek et al., 2018; Cioni 

et al., 2019). We then identified ANXA11 as a molecular tether that couples RNA 

granules to lysosomes, thus mediating efficient long-distance transport of RNA. Finally, 

we showed that ALS-associated ANXA11 mutations alter ANXA11’s biophysical and 

cellular properties, impeding axonal RNA transport. Based on our observations, we 

propose a mechanism governing active RNA granule transport in which lysosomes 

recruit RNA granules through the tethering function of ANXA11, facilitating RNA granule 

transport to distal reaches of the cell.  

 For simplicity, we referred to all LAMP1-positive vesicles as lysosomes, though 

recent evidence suggests that LAMP1-positive structures in neurons encompass a 

heterogenous group of proteolytically-active and inactive vesicles (Cheng et al., 2018; 
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Farías et al., 2017). We observed that only a fraction of LAMP1-positive vesicles co-

trafficked with RNA granules, and it will be important to further characterize the precise 

nature of these LAMP1-positive organelles. For example, as anterograde-directed RNA 

granules presumably fuel local translation at distal sites, it is possible that their 

associated LAMP1-positive organelles are pH-neutral and non-degradative in function. 

By contrast, LAMP1-positive organelles near the soma have a lower pH and can either 

fuse with or mature into lysosomes with degradative activity (Farías et al., 2017). Our 

CLEM imaging showed that the bulk of RNA granules are not internalized within 

lysosomes, as would be expected if they had undergone bulk autophagy. However, the 

juxtaposition of lysosomes with RNA granules could provide an opportunity for localized 

internalization and degradation of portions of RNA granules (e.g. via piece-meal 

microautophagy). Alternatively, retrograde-directed RNA granules may function in a 

recycling capacity, in which no RNA granule internalization by LAMP1-positive 

organelles would occur.  

 Structural modeling of ANXA11 revealed several unique attributes suitable for its 

role in tethering RNA granules with lysosomes, and we found that these structural 

properties governed ANXA11’s overall function. Similar to many other RNA granule 

proteins, the N-terminus of ANXA11 has a prion-like low complexity domain. Such 

domains can facilitate context-dependent multimerization, which in turn triggers phase 

separation into liquid droplets and hydrogels. However, unlike any other RNA granule-

associated proteins described to date, ANXA11 also has a series of Ca2+ and lipid-

binding, C-terminal annexin repeats. This unique combination of a low-complexity 

domain and a Ca2+-dependent membrane binding domain allows ANXA11 to interact 

with both RNA granules and lysosomes. Interestingly, it was recently discovered that 

Ca2+-dependent clustering of synaptic vesicles is driven by phase separation of 

synapsin 1, a protein that, like ANXA11, can both bind membranes and undergo phase 

transitions (Milovanovic et al. 2018). It is possible that additional adapter proteins 

regulate interactions between other membraneless and membrane-bound organelles in 

similar ways. 

 We observed that ANXA11 interacted with lysosomes only in the presence of 

both Ca2+ and the membrane phosphoinositide PI(3,5)P2. Interestingly, PI(3,5)P2 is 
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enriched in late endosomes and lysosomes (Ikonomov et al., 2009; Michell et al., 2006), 

and is a known natural agonist of TRPML1, a major lysosomal calcium channel (Dong 

et al., 2010). Therefore, ANXA11 may bind to lysosomal membranes in response to the 

highly-regulated focal release of Ca2+ from TRPML channels. Such a mechanism could 

enable precise spatiotemporal recruitment and/or release of RNA granules. Indeed, we 

showed that a TRPML agonist can cause increased recruitment of ANXA11 to 

lysosomes. One possibility, therefore, is that RNA granule loading occurs at times and 

places of high TRPML1 activity, while RNA granule unloading occurs at times and 

places of TRPML1 inactivation. Molecular mediators of PI(3,5)P2 dynamics, such as the 

phosphatidylinositol-5-kinase PIKfyve, myotubularin family 3-phosphatases, and the 5-

phosphatase FIG4, could also be involved in ANXA11 regulation.  

 Analyzing the association of ANXA11 with RNA granules, we observed that 

ANXA11 localizes both within the core of RNA granules and at its periphery, extending 

to sites in close association with lysosomal membranes. Localization of ANXA11 to the 

peripheral regions of these granules could facilitate interactions with lysosomes or other 

ANXA11-studded RNA granules during fusion events. Indeed, we found that 

recombinant ANXA11 facilitated interactions between purified stress granule “cores” 

(Jain et al. 2016; Khong et al. 2017) and liposomes in vitro. Additionally, we observed 

stress-induced ANXA11 foci within cells that did not contain other markers of RNA 

granules. These ANXA11 foci fused with larger stress granules positive for both ANXA11 

and other stress granule markers. The explanation for these unexpected distribution 

characteristics of ANXA11 in granules remains to be further investigated, but various 

possibilities can be envisioned given the previously described hierarchical organization 

of proteins within stress granules (Jain et al., 2016). For example, ANXA11 might 

participate in promiscuous interactions with low-complexity domains in other granule 

proteins, it might have specific interactions with local structures in low complexity 

domains of other granule proteins, or it might interact primarily with granule-associated 

RNA secondary structures (Khong et al. 2018; Mittag and Parker, 2018; Langdon et al., 

2018; Van Treeck and Parker, 2018). Interestingly, prior global proteomic mapping of 

RNA binding proteins in cancer cells identified ANXA11 as an RNA binding protein 



 16 

(Baltz et al., 2012). It remains unclear whether ANXA11 directly binds RNA, or interacts 

indirectly through intercalation into RNA granules. 

 Mutations in ANXA11 cause ALS and a related neurodegenerative disorder, 

frontotemporal dementia (FTD). Numerous mutations in ANXA11 have now been 

described by several different groups, and may account for up to 6% of familial ALS in 

Chinese populations (Smith et al., 2017; Tsai et al., 2018; Zhang et al., 2018a). 

Pathogenic mutations occur in both the N-terminal low complexity region and the C-

terminal membrane binding region. We found that these mutations altered several 

fundamental biophysical properties of ANXA11. Both N-terminal and C-terminal 

mutations increased the propensity of ANXA11 to form hydrogel-like structures, and C-

terminal mutations reduced the affinity of ANXA11 for phospholipid membranes.  

The overall impact of these mutation-induced biophysical changes had several 

consequences for RNA granule/lysosome behavior within cells. These mutations 

interfered with RNA granule/lysosome docking and increased the gel-like properties of 

ANXA11 and other associated RNA granule proteins in cells. C-terminal mutations had 

particularly deleterious effects on ANXA11 function, potentially because they altered 

both its phase separation properties and lysosomal interactions. Because we saw that 

ANXA11 knockdown reduced axonal RNA granule transport, it is likely that both loss-of-

function and gain-of-function mechanisms contribute to ALS pathogenesis in the setting 

of ANXA11 mutations.  We also showed that ANXA11 knockdown reduced delivery of 

essential mRNAs to distal regions of the neuron. We postulate that the consequences of 

even modestly-impaired RNA transport could, over time, lead to widespread disruption 

of neuronal homeostasis and potential dysregulation of synaptic activity. Concurrently, 

ANXA11 mutation-induced aggregates might sequester additional critical RNA granule 

proteins, including granule chaperones. This could lead to further dysregulation of RNA 

metabolism within affected cells.  

In summary, our study identifies a previously unrecognized relationship between 

lysosomal biology and RNA metabolism, and implicates dysfunctional RNA granule 

trafficking as a potential converging disease mechanism in ALS. Our findings further 

suggest the possibility of additional mechanistic relationships between other ALS-



 17 

associated genes, including those regulating lysosomal homeostasis, docking and 

transport machinery, and/or the biophysical state of RNA granules. 
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FIGURE LEGENDS 
Figure 1. RNA granules hitchhike on motile lysosomes in mammalian cells 
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(A) RNA granule co-imaging with different organelles. U2OS cells expressing mCherry-

G3BP1 and different organelle markers were imaged live 30 minutes after heat shock 

(43oC). Organelle markers: LAMP1 – lysosome, Sec61 – ER, TOMM20 – mitochondria, 

SiT – Golgi, SKL – peroxisome, Rab5 – early endosome, Rab7 – late endosome, 

Rab11a – recycling endosome, Ensconsin – microtubule. Arrows point to lysosome-RNA 

granule contact sites. Scale bar: 2μm. See also Fig S1 A, B.  

(B) Percentage of RNA granules that co-traffic with different organelles from (A). N=7. 

(C) Time-lapse image sequence showing RNA granule (mCherry-G3BP1) co-trafficking 

with a lysosome (LAMP1-HaloTag) along a microtubule (Ensconsin-GFP) in U20S cells 

immediately after heat shock at 43oC. Scale bar: 1μm. See also Fig S1 F, Video1, 2.  

(D) Kymograph of RNA granules co-trafficking with lysosomes in axons. 

Axons of rat cortical neurons expressing LAMP1-HaloTag and mEmerald-G3BP1 were 

imaged at 100ms/frame for 30 seconds. Arrow points to a lysosome co-trafficking with a 

G3BP1-labeled structure. P50/p150Glued: Doxycycline-inducible expression of a p50 

dynactin subunit and the CC1 domain of the p150 glued subunit of dynactin was used to 

inhibit motor-directed transport of lysosomes. Scale bar: 5 μm. See also Fig S1 J, K. 

(E) Kymograph of mRNA co-trafficking with lysosomes in axons. 

Axons of rat cortical neurons expressing LAMP1-HaloTag, actin-24xMBS and MCP-

NLS-2xEGFP were imaged as in (D). Arrow points to a lysosome co-trafficking with actin 

mRNA. Scale bar: 5 μm. See also Fig S1 I. 

(F) CLEM images of an RNA granule associated with a lysosome. Upper panel shows 

the fluorescent image of a LAMP1-labeled lysosome and a G3BP1-labeled RNA 

granule. Lower panel shows the correlated electron microscopy image. L, lysosome; G, 

RNA granule. Scale bar: 1μm. 

 
Figure 2. Identification of ANXA11 as a potential mediator of RNA granule-
lysosome associations 
A-G.  Proximity labeling proteomic screen for lysosomal interacting proteins in 
i3Neurons.  
(A) Schematic of LAMP1-APEX2 bait.  

(B) Electron microscopy image of DAB precipitate generated by LAMP1-APEX2 (dark 
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contrast, arrow) surrounding lysosomes in i3Neurons. Scale bar: 100 nm. 

(C) Confocal immunofluorescence image of LAMP1-APEX2 biotinylated prey 

(streptavidin-488 staining) surrounding LAMP1-positive lysosomes in i3Neuron axons 

(Tuj1). Scale bar: 10 μm. 

(D) Plot showing statistically significant LAMP1-APEX2 enriched prey proteins from 

proximity-labeling proteomics in i3Neurons. n = 4, p values corrected for multiple 

comparisons.  

(E) Functional Annotation Clustering of DAVID Gene Ontology terms of Lamp1-APEX 

enriched prey.  

(F) Venn diagram of LAMP1-APEX2 hits versus G3BP1-APEX2 stress-granule hits 

(Markmiller et al. 2018). Overlapping hits are also represented as blue dots in (D).  

(G) Predicted structural analysis of ANXA11 revealed four C-terminal calcium-binding 

annexin repeats (blue), and a disordered N-terminal region. 

 

H-J. Recombinant ANXA11 undergoes liquid-liquid phase separation in vitro. 
(H) PrDOS analysis of ANXA11 predicted a high likelihood of disorder of aa 1-185.  

(I) Full length ANXA11 formed spherical, fusing liquid droplets at concentrations above 

50μM (upper panel). Phase separation of ANXA11 was facilitated by 10% dextran, with 

phase separation occurring at lower ANXA11 concentrations (≥ 10μM). Scale bar: 5 μm. 

See also Fig S2 A. 

(J) The disordered N-terminus (aa 1-185, upper panel) of ANXA11 but not C-terminus 

(aa 186-502, lower panel) underwent liquid-liquid phase separation. Scale bar: 5 μm. 

 

K-Q. Recombinant ANXA11 interacts with negatively charged lysosome-
associated phospholipids. 
(K) Surface maps of predicted ANXA11 structure +/– Ca2+ showing increased positive 

surface charge (blue) in the presence of Ca2+. Top panel shows orientation of ANXA11 

and location of Ca2+ ions (green). 

(L) Protein lipid overlay assay of recombinant ANXA11-GST protein with membrane 

lipids. Recombinant ANXA11-GST protein was incubated with a membrane lipid strip +/– 

Ca2+, followed by anti-GST immunoblotting. Arrowheads indicate enriched lipid binding. 
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Red line highlighted the correlated phospholipid species. 

(M) Liposome flotation assay of recombinant ANXA11 with liposomes containing 

PI(3,5)P2 in the absence or presence of Ca2+. Liposomes with associated proteins 

floated to the top layer following ultra-centrifugation (schematic). ANXA11 in the top (T), 

middle (M) and bottom (B) fractions was detected via anti-ANXA11 western blot.  

(N) Quantification ANXA11 enrichment in the top liposome fraction in Figure 2M. n = 3, 

error bars = SEM.  

(O) Microscopy analysis of calcium-dependent recruitment of recombinant ANXA11 

protein to fluorescent PI3P-containing liposomes. Representative images showed 

ANXA11 binding to PI3P-containing liposomes at the indicated calcium concentrations. 

Scale bar, 5μm. 

(P) Microfluidic device design for diffusional sizing assay of calcium-dependent ANXA11 

binding to liposomes. Inset indicates detection area. The fluorescent intensity along the 

channel indicates different diffusion times of ANXA11. Scale bar, 200 μm. 

(Q) Microfluidic diffusional sizing assay to assess changes in molecular radius of 

ANXA11 upon Ca2+-dependent binding to liposomes (top panel). Bottom panel: 

Quantification of hydrodynamic radius of ANXA11 when binding to liposomes with (dots) 

and without (diamonds) PI3P versus Ca2+ concentration. Data were fitted with a Hill 

binding model.  

 
Figure 3. ANXA11 interacts with both RNA granules and lysosomes in living cells. 
A-D. ANXA11 interact with RNA granules in cells 
(A) ANXA11-mEmerald redistributes from the cytoplasm into dispersed puncta 

immediately following heat shock (43oC) in U2OS cells. Scale bar: 20 μm. See also Fig 

S3 A. 

(B) Heat shock induced ANXA11-mEmerald puncta in U2OS cells are motile and 

undergo fusion (upper panel), and recover rapidly after photobleaching (i.e., 

FRAP)(bottom panel). Scale bar: 1 μm. See also Fig S3 B. 

(C) Quantification of FRAP experiment in (B), n=23. Error bars = SEM. See also FigS3 

C. 

(D) Immunostaining of mEmerald-tagged ANXA11 with RNA granule markers (Cy3-Oligo 
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dT(30), anti-G3BP1) before, during and 4 hours after heat shock (HS) in U2OS cells. 

Line scans show the related intensity profiles of ANXA11 with mRNA (Cy3 Oligo-dT) and 

with G3BP1. Scale bar: 30 μm. See also Fig S3D. 

(E) Immunostaining of mEmerald-tagged ANXA11 full-length, N-terminal or C-terminal 

domain and G3BP1 following 30 minutes of heat shock (43oC) in U2OS cells. Line 

scans show the related intensity profiles of ANXA11 with G3BP1. Scale bar: 30 μm. 

Right panels show the quantification of ANXA11 tructation area overlap with 

G3BP1(relative to ANXA11 area). One-way ANOVA, *p < 0.05, ****p < 0.0001, n=10. 

Error bars = SEM. Scale bar: 30 μm. See also Fig S3 E, F. 

 

F-K. ANXA11 puncta interact with lysosomes in cells 
(F) Panel 1: Live cell imaging of U2OS cells expressing ANXA11-mEmerald and 

LAMP1-HaloTag following heat shock at 43oC in U2OS cells. Panels 2-4: Enlarged 

areas of panel 1, with arrows pointing to ANXA11/lysosome contact sites (Scale bar: 1 

μm). See also Fig S3 H. 

(G) Rat cortical neurons expressing LAMP1-HaloTag and ANXA11-mEmerald imaged 

after heat shock. ANXA11 puncta co-localized with lysosomes in different neuronal 

regions: soma (1,2), dendrite (3,4) and axon (5). Arrows point to contact sites between 

lysosomes) and ANXA11 puncta. Scale bar: 5 μm 

(H) Live imaging of rat cortical neuron axons expressing LAMP1-HaloTag and ANXA11-

mEmerald. The corresponding kymograph shows ANXA11 puncta (green) either co-

trafficking or co-localizing with lysosomes (magenta). Scale bar: 5 μm. See also Fig S3 

G. 

(I) Immunostaining of mEmerald-tagged ANXA11 full-length, N-terminal or C-terminal 

domain with LAMP1-positive lysosomes in U2OS cells following 30 minutes of heat 

shock (43oC). Line scans show related intensity profiles of ANXA11 and LAMP1. Scale 

bar: 30 μm. Far right panel shows the quantification of ANXA11 trucations and LAMP1 

co-localization (relative to ANXA11 area). One-way ANOVA, *p < 0.05, ****p < 0.0001, 

n=10. Error bars = SEM. Scale bar: 30 μm. 

(J) FLIM-FRET analysis of the interaction between ANXA11 and lysosomes and its 

regulation by lysosomal Ca2+ and PI(3,5)P2. Human i3Neurons were transduced with 
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ANXA11-mCerulean3 (FRET donor) and LAMP-YFP (FRET acceptor). FLIM-FRET 

images were acquired for the same neurons before and after treatment with ML-SA1, 

BAPTA-AM or YM201636, and the lifetime of the ANXA11-mCerulean3 signal was 

determined. Left vertical panels show intensity images of LAMP1-YFP with the various 

treatments. Middle and right panels show ANAX11-mCeurlean3 lifetimes before and 

after drug treatment. 

(K) Quantification of FLIM-FRET lifetime measurements from (H). N=31 (NT), 24 (ML-

SA1), 20 (BAPTA-AM), 24 (YM201636). One-way ANOVA, *p < 0.05. Error bars = SEM. 

 
Figure 4. Effects of ALS-associated ANXA11 mutations on RNA granule 
interactions 
(A) U2OS cells expressing mEmerald-tagged ANXA11 (wt, D40G, R235Q or R346C) 

were heat shocked (43oC) for 30 minutes. A single ANXA11-positive puncta in each of 

the different transfected cells was photobleached and recovery of fluorescence was 

monitored by time-lapse imaging. Scale bar: 1 μm.  

(B) Quantification of the FRAP experiments in (A), n=21. Error bars = SEM. 

(C) Phase partitioning characteristics of ANXA11 ALS-associated mutants in vitro. 

Purified wt, D40G, R346C ANXA11 was temperature transitioned between 4oC and 

25oC through multiple cycles. ANXA11(p.D40G) formed both large spherical droplets 

and smaller, non-fusing gelled condensates, with the condensates unable to reform 

after one round of temperature shift (middle panel). ANXA11(p.R346C) formed 

irregularly-shaped solid and spiculated gelled condensates with few, if any, liquid 

droplets capable of disassembly/reassembly during temperature shifts (bottom panel). 

Scale bar: 5 μm. 

(D) U2OS cells expressing similar level of Opto-mCherry (CRY2olig-mCherry), Opto-

ANXA11 or Opto-ANXA11 ALS-associated mutant were exposed to 0.2% 488nm light to 

initiate oligomerization. Scale bar: 30 μm. See also Fig S4 B. 

(E) Quantification of integrated fluorescence intensity of Opto-labeled proteins in (D) 

during 300 seconds of 488 nm light activation, n=20. Error bars = SEM. See also Fig S4 

C. 

(F) Quantification of the number of Opto-labeled puncta present 30 minutes after the 
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488 nm light was turned off. n=17-19. One-way ANOVA, ns, not significant. ****p < 

0.0001. Error bars= SEM. 

(G) Immunostaining of mEmerald-tagged wild-type and mutant ANXA11 with G3BP1 

and mRNA labeled by Oligo-dT in U2OS cells following 30 minutes of heat shock. Co-

localization of ANXA11 with individual RNA granules is plotted in the line scans to the 

right. Scale bar: 30 μm. See also Figure S4 D. 

(H) Quantification of percentage of area of ANXA11 structures co-localizing with 

G3BP1-labeled RNA granules in (G). n=28-31. One-way ANOVA, ns, not significant. 

****p < 0.0001. Error bars = SEM. 

 
Figure 5. ALS-associated mutations in ANXA11 disrupt its interactions with 
lysosomes 
(A) Live cell imaging of Opto-mCherry, wild-type Opto-ANXA11, or mutant Opto-

ANXA11 with LAMP1-HaloTag in U2OS cells before and after oligomerization induced 

by exposure to 488nm light. Scale bar: 2 μm. See also Fig S5A. 

(B) Quantification of percentage of light-activated Opto-mcherry (CRY2olig-mCherry), 

wild-type Opto-ANXA11, or mutant Opto-ANXA11 clusters co-localizing with lysosomes 

at 300s post-488 nm light exposure from (A). n=26-30. One-way ANOVA, ns, not 

significant. ****p < 0.0001. Error bars = SEM. See also Fig S5B. 

(C) Extent of co-localization of wild-type or mutant ANXA11 with lysosomes. U2OS cells 

expressing LAMP1-HaloTag, wild-type ANXA11-mEmerald or mutant ANXA11-

mEmerald were imaged 30 minutes after heat shock (43oC). Scale bar: 2 μm. 

(D) Percentage of fluorescence associated with wild-type ANXA11 or mutant ANXA11 

that co-localized with lysosomes from (C). n= 22-40. One-way ANOVA, ns, not 

significant. ****p < 0.0001. *p < 0.05. Error bars = SEM. 

(E) Extent of co-trafficking of wild-type or mutant ANXA11 with lysosomes in axons. 

Axons of rat cortical neurons expressing LAMP1-HaloTag and wild-type or mutant 

ANXA11-mEmerald were imaged for 30 seconds. Kymographs show WT and p.D40G 

ANXA11 co-traffic with lysosomes (see arrows) while p.R235Q and p.R346C disrupt 

ANXA11 co-trafficking with lysosomes. Scale bar: 10 μm.  

(F) Number of puncta containing WT or mutant ANXA11 that co-trafficked with 
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lysosomes as a function of total lysosome number from (E). n= 21-30. One-way 

ANOVA, ns, not significant. **p < 0.01. *p < 0.05. Error bars = SEM. 

 

Figure 6. ANXA11 acts as an adaptor between RNA granules and lysosomes 
 (A) Time-lapse imaging of U2OS cells expressing LAMP1-HaloTag, Opto-ANXA11 and 

mEmerald-G3BP1 after 488nm light exposure to induce Opto-ANXA11 oligomerization. 

U2OS cells were exposed to heat shock (43 oC) for 15 minutes prior to light activation to 

form visible G3BP1 stress granules. Stress granules (green) associate with LAMP1-

labeled lysosomes (white) at sites where ANXA11 puncta (red) are localized. Scale bar: 

1 μm. See also Fig S6 A, Video 3. 

(B) Live cell confocal imaging of U2OS expressing LAMP1-HaloTag, ANXA11-mEmerald 

and mCherry-G3BP1 following 30 minutes of heat shock (43oC). Quantification of the 

intensity profiles of the different probes across midline of stress granules (dotted line) is 

shown to right n=6, Error bars = SEM. Scale bar: 1μm.  

(C) Schematic of in vitro RNA granule liposome reconstitution assay. 

(D) Stress granule cores were purified from cultured cells, and incubated with PI3P 

containing liposomes +/– recombinant ANXA11 +/– Ca2+. Upper panel: + ANXA11 only, 

Middle panel: + Ca2+only, Bottom panel: + both ANXA11 and Ca2+. Scale bar=10 μm. 

(E) Quantification of mean intensity of stress granule binding to PI3P containing 

liposomes in (D). n>300, One-way ANOVA, ***p < 0.001. Error bars = SEM. 

(F) Co-localization of ANXA11, lysosomes, and RNA granules in axons. Rat cortical 

neurons were transduced with LAMP1-HaloTag to label lysosomes, ANXA11-mEmerald, 

and mCherry-G3BP1 to label RNA granules. Arrows indicate areas of ANXA11, 

lysosome and RNA granule co-localization. Scale bar: 5 μm. See also Fig S7 A, Video 

4, 5. 

(G) ANXA11 knockdown perturbs mRNA/lysosome co-trafficking in axons. Kymographs 

of mRNA (actin-24xMBS/ MCP-NLS-2xEGFP) and lysosome (LAMP1-HaloTag) 

trafficking in axons is shown. Rat neurons expressed control or ANXA11-targeting 

shRNAs. Scale bar: 5 μm. 

(H) Quantification of (G). n=22-36, t-test, ns, not significant.  **p < 0.01. Error bars = 

SEM. 
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(I) smFISH of beta-actin in growth cones from neuron expressing control shRNA (left 

panel) or ANXA11 shRNA (right panel). Black colored spots represent the signal from 

beta-actin smFISH probes, red signal represents membrane stain of growth cones. 

Scale bar: 1 μm. 

(J) Quantification of average number of beta-actin mRNA molecules in (I). N=44-96, t-

test, ns, not significant. **p < 0.01. Error bars = SEM. 

 
Figure 7. Effects of ALS-associated ANXA11 mutations on axonal RNA 
granule/lysosome hitchhiking 

(A) Kymographs of mRNA (actin-24xMBS/ MCP-NLS-2xEGFP ) and lysosome (LAMP1-

HaloTag) trafficking in rat neuron axons expressing wild-type or R235Q mutant ANXA11. 

Arrows point to examples of mRNA co-trafficking with lysosomes. Scale bar: 10 μm. 

(B) Quantification of (A). n=14-36. One-way ANOVA. *p < 0.05, **p < 0.01.  Error bars = 

SEM. 

(C) smFISH of beta-actin in growth cones from rat neurons expressing wild-type or 

mutant ANXA11. Black colored spots represent the signal from beta-actin smFISH 

probes, red signal represents membrane stain of growth cones. Scale bar: 1 μm. 

(D) Quantification of (C). N= 64-128. One-way ANOVA. ****p < 0.0001,  Error bars = 

SEM. 

(E) Lysosome trafficking in live zebrafish embryo ganglion axons. Lysosomes were 

labeled with LAMP1-TagBFP2 in zebrafish pLL ganglions; insets show ganglion (left) 

and axon tips (right). Time-lapse imaging reveals bi-directional lysosomal trafficking in 

these axons (bottom middle panels). 

(F) Imaging of live zebrafish neurons reveals bidirectional co-trafficking of CAPRIN1-

positive RNA granules with lysosomes in axons. Yellow arrows point to anterograde co-

trafficking of LAMP1 (green) and CAPRIN1 (magenta); white arrows point to retrograde 

co-trafficking of LAMP1 (green) and CAPRIN1 (magenta). Corresponding kymograph 

shown below. See also Supplemental Video 6. 

(G) Imaging of live zebrafish neurons expressing ANXA11 and CAPRIN1 reveals co-

trafficking of ANXA11-labeled structures (green) with CAPRIN1 (magenta) in axons. 

Corresponding kymograph shown below. See also Supplemental Video 7. 
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(H) Effect of ANXA11 ALS-associated mutations on trafficking of CAPRIN1-labeled RNA 

granules in zebrafish axons. CAPRIN1 and wild-type or mutant ANXA11 were 

expressed in zebrafish ganglion. Anterograde or retrograde trafficking of CAPRIN1 

vesicles per μm along the axon length were quantified in each group. n = 9-18. Two-way 

ANOVA with Tukey post-hoc analysis, ns, not significant. *p < 0.05. Error bars = SEM. 

See also Fig S7 E-G.  

 
SUPPLEMENTAL FIGURE LEGENDS 
Supplemental Figure 1. RNA granules hitchhike on motile lysosomes in 
mammalian cells. Related to Figure 1. 
(A) Quantification of the percentage of RNA granules in contact with different organelles 

from Fig 1A. (n=7). 

(B) Contacting RNA granules and lysosomes are frequently in close association with 

ER. U20S cells were transfected with LAMP1-HaloTag, mEmerald-SEC61 and low 

levels of mCherry-G3BP1 for 24hrs. Cells were imaged live for 30 minutes after heat 

shock (43oC). Arrows point to areas where co-localized LAMP1 (white)- and G3BP1 

(red)- labeled structures are in close association with Sec61-labeled ER (green). Scale 

bar: 1μm. 

(C) Quantification of velocity of G3BP1 labeled RNA granule co-localized or not co-

localized with lysosomes, n= 455 (number of granules, not co-localized), 396 (number of 

granules, co-localized), t-test, ***p < 0.001. Error bars = SEM. 

(D) Percentage of G3BP1 labeled RNA granule co-localized or not co-localized with 

lysosomes with displacement over 10μm, n=7 (number of cells), t-test, **p < 0.01. Error 

bars = SEM. 

(E) Percentage of G3BP1 labeled RNA granules treated or not treated with nocodazole 

with displacement over 10μm, n=4, t-test, *p < 0.05. Error bars = SEM. 

(F) Time-lapse image sequence showing an RNA granule co-trafficking with a lysosome 

along a microtubule. U2OS cells were transfected with LAMP1-HaloTag, Ensconsin-

GFP and low amounts of mCherry-G3BP1 for 24hrs. Images were acquired immediately 

after heat shock at 43oC. Scale bar: 1μm. 
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(G) Quantification of LAMP1 labeled lysosomes co-localizing with G3BP1 labeled RNA 

granules (relative to number of lysosome), n=20 (number of cells). 

(H) Kymograph of mEmerald tag and lysosomes in axons. Rat cortical neurons were 

transduced with LAMP1-HaloTag to label lysosomes and PGK promoter driven 

mEmerald tag. Time-lapse images of axons were acquired at 100ms/frame for 30 

seconds. Scale bar: 5 μm. 

(I) Kymographs illustrating co-trafficking and stationary interaction patterns of lysosomes 

with RNA granules. Rat cortical neurons were transduced with LAMP1-HaloTag to label 

lysosomes and actin-24xMBS/MCP-NLS-2xEGFP to label actin mRNA. Upper panel 

shows co-trafficking of lysosomes and mRNA, and bottom panel shows lysosomes and 

mRNA associating in a relatively stationary manner. Scale bar: 5 μm. 

(J) Kymograph of CAPRIN1-labeled RNA granules co-trafficking with lysosomes in 

axons. 

Rat cortical neurons were transduced with LAMP1-HaloTag to label lysosomes and 

mEmerald-CAPRIN1 to label RNA granules. Time-lapse images of axons were acquired 

at 100ms/frame for 30 seconds. Arrows point to lysosomes co-trafficking with CAPRIN1-

labeled structures. p50/p150Glued, doxycycline-inducible expression of a p50 dynactin 

subunit and the CC1 domain of the p150 glued subunit of dynactin. Scale bar: 5 μm. 

(K) Kymograph of TDP43-labeled RNA granules co-trafficking with lysosomes in axons.  

Rat cortical neurons were transduced with LAMP1-HaloTag to label lysosomes and 

mEmerald-TDP43 to label RNA granules. Time-lapse images of axons were acquired at 

100ms/frame for 30 seconds. Arrow points to a lysosome co-trafficking with a TDP43-

labeled structure. Dox, doxycycline-inducible expression of a p50 dynactin subunit and 

the CC1 domain of the p150 glued subunit of dynactin. Scale bar: 5 μm. 

(L) Quantification of frequency of G3BP1, actin-MS2, CAPRIN1, TDP43 labeled RNA 

granule and mEmerald tag in axons, n=22(mEmerald), 19(G3BP1), 35(actin-MS2), 

21(caprin1), 35(TDP43). 

(M) Quantification of LAMP1 labeled lysosomes co-localizing or co-trafficking with 

G3BP1, actin-MS2, CAPRIN1, TDP43 labeled RNA granules and mEmerald tag 

(relative to number of lysosomes) in axons, n=22(mEmerald), 19(G3BP1), 36(actin-

MS2), 25(CAPRIN1), 41(TDP43). 
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(N) Quantification of LAMP1-labeled lysosomes co-localizing or co-trafficking with 

G3BP1, actin-MS2 (relative to number of lysosomes), with or without doxycycline-

inducible expression of a p50 dynactin subunit and the CC1 domain of the p150 glued 

subunit of dynactin. N=35(G3BP1,-), 35(G3BP1, p50/p150Glued), 36(actin-MS2, -), 

30(actin-MS2, p50/p150Glued). T-test, **p < 0.01, *p < 0.05, ns, not significant. Error 

bars = SEM. 

 
Supplemental Figure 2. Recombinant ANXA11 undergoes liquid-liquid phase 
separation in vitro. Related to Figure 2. 
A. Purified ANXA11 protein formed biological condensates. 

Full length wild type ANXA11 formed spherical, fusing liquid droplets at ANXA11 

concentrations at 10μM facilitated by 10% dextran. Inset shows a fusion event between 

two phase separated liquid droplets.  

 
Supplemental Figure 3. ANXA11 exhibits phase condensate properties and 
interacts with both RNA granules and lysosomes in living cells. Related to Figure 
3. 
(A) ANXA11’s amino acid sequence 1-185 was tagged with mEmerald and expressed in 

U2OS cells. Small ANXA11 positive puncta appeared in cells that had not been heat 

shocked.  

(B) Live cell imaging of puncta from (A) reveal these structures are motile and undergo 

fusion (upper panel). Upon photobleaching, ANXA11 fluorescence within the puncta 

quickly returned from free cytoplasmic pools (bottom panel). Scale bar: 1 μm. 

(C) Quantification of the FRAP experiment in (B), n=7. 

(D) Co-localization of ANXA11 puncta with RNA granule markers before, during and after 

heat shock (HS). U2OS cells under normal culture conditions (before HS), under heat 

shock (HS) or 4 hours after heat shock (after HS) were fixed, hybridized with Cy3-Oligo 

dT(30) followed by immunostaining with antibody against TDP43. Linescans show the 

related intensity profiles of ANXA11 with mRNA (Cy3 Oligo-dT) and with TDP43. Scale 

bar: 30 μm. 
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(E) Co-localization of ANXA11 full-length, N-terminal or C-terminal domain with RNA 

granules. U2OS cells were fixed after 30 minutes of heat shock (43oC), followed by 

immunostaining with antibody against TDP43. Line scans show the related intensity 

profiles of ANXA11 with TDP43. Scale bar: 30 μm. One-way ANOVA, ****p < 0.0001, 

n=20 (FL), 11(NTD), 19(CTD), Error bars=SEM.  

(F) Co-localization of ANXA11 full-length, N-terminal or C-terminal domain with RNA 

granule. U2OS cells were fixed after 30 minutes of heat shock (43oC), followed by 

hybridizing with Cy3-Oligo dT(30). Linescans show the related intensity profiles of 

ANXA11 with TDP43. Scale bar: 30 μm. One-way ANOVA, ****p < 0.0001, n=30 (FL), 

30(NTD), 27(CTD), Error bars=SEM.  

(G) Rat cortical neurons were transduced with ANXA11-mEmerald. A single labeled 

ANXA11 puncta was photobleached, then the recovery of fluorescence into the bleached 

region-of-interest was examined over time. Scale bar: 2 μm. 

(H) Time-lapse imaging showing the interaction of ANXA11 puncta (red) with LAMP1-

labeled lysosomes (white) in U2OS cells after heat-shock. Scale bar: 1 μm. 

(I) Quantification of LAMP1 labeled lysosomes co-localizing with ANXA11(relative to 

number of lysosomes) in U2OS or rat neuron. N=25(U2OS), 10(neuron). 
 
Supplemental Figure 4. ALS-associated mutations in ANXA11 disrupt RNA 
granule interactions. Related to Figure 4. 
(A) A schematic map of ANXA11 protein with the position of ALS-associated mutants. 

(B) Quantification show the temporal evolution of the integrated fluorescence intensity 

from the expressed Opto-mCherry, ANXA11 full-length, NTD or CTD proteins during 300 

seconds of light activation, n=11 (Opto-mCherry), 17 (ANXA11 full-length), 20(ANXA11 

NTD), 20(ANXA11 CTD). Error bars = SEM. 

(C) U2OS were transfected with Opto-mCherry (CRY2olig-mcherry), Opto-ANXA11,  

Opto-ANXA11 NTD or Opto-ANXA11 CTD for 24hrs. Cells with similar Opto-ANXA11 

expression levels were exposed to 0.2% 488nm light to initiate oligomerization. Scale 

bar: 30 μm. 

(D) Co-localization of ANXA11 or ANXA11 ALS-associated mutants with TDP43 and 

mRNA labeled by Oligo-dT. U2OS cells expressing mEmerald labeled ANXA11 or 
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ANXA11 ALS-associated mutants were heat shocked for 30 mins, fixed, and then 

hybridized with Cy3-Oligo dT(30) and immunostained with antibodies against TDP43 to 

label RNA granules. The extent of co-localization of ANXA11 or the ALS-associated 

mutants with the RNA granules is plotted in the line-scans to the right.  

(E) Quantification of percentage of area of ANXA11 structures co-localizing with TDP43-

labeled RNA granules in (D). One-way ANOVA, ns, not significant. ****p < 0.0001. Error 

bars = SEM. N=12 (WT), 7 (D40G), 6 (R235Q), 7(R346C). 

(F) Co-localization of ANXA11 or ANXA11 ALS-associated mutants with RNA granules 

labeled by TDP43 and mRNA labeled by Oligo-dT after heat shock (HS). U2OS were 

heat shocked for 30 mins and then moved to 37oC for 4 hrs to allow recovery. The cells 

were then fixed, hybridized with Cy3-Oligo dT(30) followed by immunostaining with 

antibodies against TDP43 to label RNA granules. Linescan analysis show the related 

intensity profiles of ANXA11 or ALS-associated mutations with mRNA (Cy3 Oligo-dT) 

and TDP43. Scale bar: 30 μm. 

(G) Co-localization of ANXA11 or ALS-associated ANXA11 mutants with RNA granules 

labeled by G3BP1 and mRNA (right panel) after heat shock (HS). U2OS were heat 

shocked for 30 mins and then moved to 37oC for 4 hrs to allow recovery. The cells were 

then fixed, hybridized with Cy3-Oligo dT(30) followed by immunostaining with antibodies 

against G3BP1 (right panel) to label RNA granules. Linescan analysis show the related 

intensity profiles of ANXA11or ALS-associated ANXA11 mutants with mRNA (Cy3 Oligo-

dT) and G3BP1. Scale bar: 30 μm. 

(H) U2OS cells expressing mCherry-G3BP1 to label RNA granules were co-transfected 

with ANXA11-mEmerald, ANXA11(D40G)-mEmerald, ANXA11(R235Q)-mEmerald or 

ANXA11(R346C)-mEmerald for 24 hrs. Cells were heat shocked (43oC) for 30 min, A 

single G3BP1-positive puncta in each of the different transfected cells was 

photobleached and recovery of fluorescence into the puncta was monitored by time-

lapse imaging. Scale bar: 1 μm.  

(I) Quantification of H. N=7(WT), 9(D40G), 8(R235Q), 7(R346C). Error Bars=SEM. 

 

Supplemental Figure 5. ALS-associated mutations in ANXA11 disrupt its 
interactions with lysosomes, related to Figure 5. 
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(A) Co-localization of light-activated opto-ANXA11 or ANXA11 N-terminal domain or C-

terminal domain with lysosomes in cells. U2OS cells were co-transfected with LAMP1-

HaloTag, Opto-mcherry (CRY2olig-mcherry), Opto-ANXA11, Opto-ANXA11 NTD or 

Opto-ANXA11 CTD for 24 hrs. Cells with similar Opto-ANXA11 expression levels were 

exposed to 0.2% 488nm light to initiate oligomerization. Cells were imaged over 300 

seconds of light activation. Scale bar: 2 μm. 

(B) Percentages of light-activated Opto-mcherry (CRY2olig-mcherry), Opto-ANXA11 

Opto-ANXA11 NTD or Opto-ANXA11 CTD clusters co-localizing with lysosomes after 

300 seconds of light activation from the experiment in (A). n=14 (Opto-mcherry), 18 

(ANXA11 full-length), 21(ANXA11 NTD), 21(ANXA11 CTD). One-way ANOVA, ns, not 

significant. ****p < 0.0001. Error bars = SEM. 

(C) Frequency of LAMP1 labeled vesicles in axons expressed ANXA11 or ALS-

associated ANXA11 mutants. n=25(WT), 50(D40G), 15(R235Q), 22(R346C). One-way 

ANOVA, ns, not significant. Error bars = SEM. 

 

Supplemental Figure 6. ANXA11 acts as an adaptor between RNA granules and 
lysosomes. Related to Figure 6. 
(A) Additional example of a time-lapse imaging sequence of U2OS cells expressing 

LAMP1-HaloTag, Opto-ANXA11 and mEmerald-G3BP1 after 0.2% 488nm light 

activation to initiate Opto-ANXA11 oligomerization. U2OS cells were exposed to heat 

shock (43 oC) for 15 minutes prior to light activation. Here, G3BP1-labeled RNA 

granules (green) associate with ANXA11 puncta (red) in the cytoplasm before 

redistributing onto the surface of LAMP1-labeled lysosomes (white) as merged puncta. 

Scale bar: 1 μm. 

(B) Quantification of the percentage of RNA granules co-localizing with LAMP1 over 

300s with or without light activation in (A). N=11. Paired t-test, **, p<0.01. Error bars = 

SEM. 

(C) Percentage of co-localization between ANXA11 and LAMP1, G3BP1 and LAMP1, 

G3BP1 and ANXA11. N=20. Error bars = SEM. 

(D) Q-PCR shows relative ANXA11 mRNA level in control shRNA or ANXA11 shRNA 

transduced neurons. N=3. Error bars = SEM. 
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(E) Frequency of LAMP1-labeled vesicles in axons expressed control shRNA or 

ANXA11 shRNA. N=36(sh control), 35 (sh ANXA11), t-test, ns, not significant. Error bars 

= SEM. 

(F) Effect of ALS-associated ANXA11 mutants on RNA granule-lysosome association in 

heat shocked cells. U2OS cells were transfected with mEmerald tagged ANXA11 or 

ANXA11 ALS-related mutant constructs. Cells were heat shocked (43oC) for 30 minutes, 

fixed, followed by immunostaining with antibodies against G3BP1 and LAMP1 to 

examine the effects of ANXA11 mutants on RNA granule-lysosome contacts compared 

to those in WT ANXA11-mEmerald expressing cells. Arrows point to G3BP1-labeled 

RNA granule(megenta) contacting with lysosomes(red). Scale bar: 30 μm. 

(G) Percentage of G3BP1-labeled granules co-localized with LAMP1-labeled lysosomes 

in (E). n= 20 (WT), 25 (D40G), 28 (R235Q), 28 (R346C). One-way ANOVA, ns, not 

significant. ****p < 0.0001. Error bars = SEM. 

(H) U2OS cells were transfected with mEmerald tagged ANXA11 or ANXA11 ALS-

related mutant constructs. Cells were heat shock (43oC) for 30 minutes, fixed, 

hybridized with Cy3-Oligo dT(30) followed by immunostaining with antibodies against 

LAMP1 to examine the effects of ANXA11 mutants on RNA granule-lysosome contacts 

compared to that in WT ANXA11-mEmerald expressing cells. Graphs on the right 

represent intensity profiles across the dotted line, revealing the ANXA11 mutants 

R235Q and R346C show decreased colocalization with RNA granules and lysosomes 

and affected RNA granule-lysosome contact. Scale bar: 1μm. 

 
Supplemental Figure 7. ALS-associated mutations in ANXA11 disrupt RNA 
granule hitchhiking on lysosomes in axons from rat cortical neurons and 
zebrafish neurons. Related to Figure 7. 
(A) Kymographs showing RNA granule protein and mRNA co-transport on the same 

lysosomes in axons. Rat cortical neurons were transduced with LAMP1-HaloTag to label 

lysosomes (red), and mCherry-G3BP1 to label RNA granules (green), and actin-

24xMBS/ MCP-NLS-2xEGFP(blue). Time-lapse movies of axons were then acquired at 

100ms/frame for 30 seconds and displayed in kymograph format. Arrows point to a 

example of both G3BP1 and mRNA co-trafficking with lysosomes. Scale bar: 5 μm. 
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(B) Kymographs showing the effect of ALS-associated ANXA11 mutants on RNA co-

trafficking with lysosomes in rat neuron axons. Rat cortical neurons were transduced 

with LAMP1-HaloTag to label lysosomes (red), actin-24xMBS/ MCP-NLS-2xEGFP 

(green) and ANXA11 (upper panel) or ANXA11 (D40G) (bottom panel). Time-lapse 

movies of axons were then acquired at 100ms/frame for 30 seconds and displayed in 

kymograph format. Arrows point to an example of RNA granule co-trafficking with 

lysosomes. Scale bar: 5 μm. Quantification of RNA granule co-localization or co-

trafficking with lysosomes in axons expressing either ANXA11 or ANXA11 p. D40G 

mutation (relative to lysosome number). n=36 (WT), 12 (D40G). One-way ANOVA. ns, 

not significant. Error bars = SEM. 

(C) Quantification of growth cone area in axons expressing either ANXA11 or mutant 

ANXA11. N=61(WT), 56(D40G), 46(R235Q), 39(R346C). One-way ANOVA. **, p<0.01, 

ns, not significant. Error bars = SEM. 

(D) Quantification of growth cone area in axons expressing either ANXA11 or mutant 

ANXA11. N= 80(sh control), 54(sh ANXA11). unpaired t-test. ns, not significant. Error 

bars = SEM. 

(E) Quantification of vesicles triple labeled with CAPRIN1/LAMP1/ANXA11 over the total 

LAMP1 vesicles undergoing anterograde or retrograde transport in zebrafish axons. 

N=9-18. 

(F) Quantification of trafficking distance for CAPRIN1 vesicles in zebrafish axons. N=9-

18. Two-way ANOVA with Tukey post-hoc analysis, ns, not significant. *p < 0.05. Error 

bars = SEM. 

(G) Quantification of trafficking velocity for CAPRIN1 vesicles in zebrafish axons. 

N=9-18. Two-way ANOVA with Tukey post-hoc analysis. *p < 0.05. Error bars = SEM. 

 
STAR METHODS 
LEAD CONTACT AND MATERIALS AVAILABILITY 
Further information and requests for resources and reagents should be directed to the 

Lead Contact, Michael E. Ward (wardme@nih.gov). Plasmids generated in this study 

have been deposited to Addgene. iPSC lines will be distributed to interested parties 

upon request. 

mailto:wardme@nih.gov
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 
hiPSC culture 

The control male WTC11 human induced pluripotent stem cells (hiPSC) line was 

obtained from Coriell. We adhered to NIH Intramural Research Program policies 

regarding the registration and use of this iPSC line. Karyotyping was used to 

authenticate that the line had a normal male karyotype. HiPSCs were maintained under 

feeder-free conditions in a 37oC, 5% CO2 tissue culture incubator on tissue culture 

treated dishes coated with growth factor-reduced Matrigel (BD Biosciences) and fed 

every 1-2 days with Essential 8 medium (Thermo Fisher Scientific), as needed. 

Accutase (STEMCELL Technologies) was used to enzymatically dissociate hiPSCs into 

single cells, and 0.5mM EDTA was used for routine dissociation to maintain colony 

growth. To promote cell survival during passaging, cells were passaged with the p160-

Rho-associated coiled coil kinase (ROCK) inhibitor Y-27632 (10 M: Selleckchem) 

(Watanabe et. al., 2007). hiPSCs were frozen in 90% fetal bovine serum (HyClone) and 

10% DMSO (Sigma).  

Generation of Stable hiPSC Lines 
WTC11 hiPSCs with single-copy integration of a doxycycline-inducible NGN2 cassette 

at the AAVS1 locus (Fernandopulle et al, 2018) were singularized with Accutase, 

resuspended in PBS, and counted with a Countess automatic cell counter (Life 

Technologies). For plasmid transfections, 1.5 million hiPSCs were seeded onto one well 

of a 6-well dish in Essential 8 supplemented with Y-27632 (10 M). 2-5 hours later, 

Lipofectamine Stem (Thermo Fisher Scientific) was used to introduce the appropriate 

knockin vector (CLYBL-LAMP1-APEX2 or CLYBL-LAMP1-NES-APEX2) (1.8 g) and 

each CLYBL TALEN pair (0.6 g each). Cells were dissociated the next day onto a 

10cm dish and maintained for 1 week in Essential 8 medium (supplemented with 10 M 

Y-27632 for the first 2 days). Single fluorescent cells were then isolated and seeded in 

individual wells of a 96-well dish by FACS on a Sony SH800S Cell Sorter. These cells 

were maintained in Essential 8 Flex medium (Thermo Fisher Scientific) supplemented 

with RevitaCell (Thermo Fisher Scientific). After 1-2 weeks, clones were dissociated 

with Accutase and seeded into 6-well dishes in Essential 8 medium supplemented with 
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Y-27632. Genomic DNA was isolated with a Quick-DNA Microprep Kit (Zymo Research) 

and single-copy CLYBL integration was confirmed with PCR. PCR positive clones were 

subsequently checked for genomic abnormalities with karyotyping. 

Inducible System for Neuron Differentiation 
 Stable hiPSC lines was generated from the WTC11 genetic background with a 

doxycycline-inducible mNGN2 transgene at the AAVS1 locus. For differentiation, 25 

million hiPSCs were seeded onto a 15cm tissue culture dish in Neuronal Induction 

Medium (NIM), composed of DMEM/F12 medium (ThermoFisher Scientific), N-2 

supplement (ThermoFisher Scientific), Nonessential amino acids supplement (NEAA) 

(ThermoFisher Scientific), Gluta-MAX supplement (ThermoFisher Scientific), Y-27632 

(10 M), and doxycycline (2 g/ml, Sigma). Cells were maintained on NIM with daily full 

medium changes for 3 days.  

hiPSC-derived Neuron Culture 
 After the 3-day differentiation period, cells were dissociated with Accutase from 

the 15-cm dish and seeded onto final experimental plates coated with poly-L-ornithine 

(0.1 mg/ml). Cells were seeded and maintained in Cortical Neuron Culture Media, 

composed of BrainPhys Neuronal Medium (STEMCELL Technologies), B-27 

supplement (ThermoFisher Scientific), brain-derived neurotrophic factor (10 ng/ml), 

neurotrophin-3 (10 ng/ml), and mouse laminin (1 g/ml). Half-media changes were 

conducted every 3 days for the lifetime of the culture.  

U2OS cell culture 
The U2OS cell line used in these studies was the human osteosarcoma cell line, 

obtained directly from ATCC (HTB96). Cells were authenticated by morphological 

assessment under microscopy. Cells were grown in a 37oC, 5% CO2 tissue culture 

incubator on tissue culture treated dishes in DMEM + 10% FCS and passaged with 

Trypsin EDTA. 
Primary Cortical Neuron Culture 
        Cortices were dissected from E17 Sprague-Dawley rat embryos. Rat maintenance 

and care followed policies advocated by NRC and PHS publications, and approved by 

Institutional Animal Care and Use Committee (IACUC), Janelia Research Campus. 
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Tissue were digested with papain and gently triturated and filtered through 70 micron 

strainer. Neurons were plated in poly-L-ornithine coated dishes and cultured in 

Nbactive4 medium at 37o C, indicated virus were transduced at DIV 10-14 and imaged 

at DIV 17-21. 

Zebrafish husbandry 

Adult *AB were maintained at 28.5oC and spawned according to standard protocols 

(Kimmel et al., 1995). Embryos were derived from natural matings or in vitro fertilization, 

raised in embryo media, and developmentally staged using previously established 

methods (Westerfield, 2000). All in vivo experimental protocols were approved by the 

National Institute of Child Health and Human Development Animal Care and Use 

Committee (ASP18.008). 

 

METHOD DETAILS 
Plasmids and Cloning 
 All plasmids generated in this study have been deposited to Addgene. Plasmids 

for generating stable iPSC lines (e.g. APEX2 constructs) were designed with 1 kb left 

and right homology arms against the CLYBL (citrate lyase subunit beta-like protein, 

Uniprot ID: Q8N0X4) locus. This locus was chosen to permit stable expression in both 

the iPSC and neuron stages. Plasmids were generated with PCR and recombinase-

based cloning (In-Fusion® by Clontech or NEBuilder by NEB). Plasmids for virus 

transduction in neurons (e.g. ANXA11-mEmerald, ANXA11-mCerulean3 LAMP1-

HaloTag, LAMP1-YFP, mcherry-G3bp1,mEmerald-G3bp1, mcherry-TDP43, mEmerald-

TDP43, mEmerald-caprin1) were generated with the pLEX lentiviral vector (Thermo 

Scientific) and ligation-based cloning. Actin-24xMBS, MCP-NLS-HaloTag and MCP-

NLS-2xEGFP plasmids were kindly provided by Dr. Young Yoon from Dr. Robert H. 

Singer lab. Opto-ANXA11 plasmids were made by insertion of CRY2olig-mcherry on the 

N-terminal of ANXA11 plasmids by Gibson cloning. ANXA11 shRNA expression 

cassettes were made by oligo annealing and ligation into pLKO.1 vector. 

Antibodies 
 Mouse monoclonal anti-Lamp1 antibody (H4A3, Developmental Studies 

Hybridoma Bank) was used extensively for western blot (WB) and immunofluorescence 
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(IF) studies, and mouse monoclonal M2 anti-Flag antibody (F3165, Millipore Sigma) 

was used to detect Lamp1-APEX expression via IF. GST Tag monoclonal antibody (8-

326, ThermoFisher) was used to detect ANXA11-GST in lipid strip assay. Polyclonal 

rabbit anti-ANXA11 (HPA027545) was used for WB in lysosomal isolation experiments, 

liposome floatation as well as for protein localization via IF. Polyclonal rabbit anti-TDP43 

(10782-AP, Proteintech) and anti-G3BP1 (13057-2-AP, Proteintech) were used to detect 

stress granule formation via IF, and anti-G3BP1 was also used for stress granule 

isolation (IP) and WB.  

APEX proteomics 
 hiPSC-derived neurons were grown to a density of 10 million cells per 10cm dish. 

4 biological replicates of each experimental condition were used. To provide a substrate 

for the APEX enzyme, cells were fed with 500uM phenol-biotin (CAS 41994-02-9, 

Adipogen) and incubated at 37C for 30 minutes prior to enzyme stimulation. To 

stimulate APEX2, cells were treated with 1mM hydrogen peroxide and incubated at 37C 

for 1 minute. The reaction was terminated by aspirating the growth medium and adding 

4mL of ice-cold quench buffer (10mM sodium azide, 10mM sodium ascorbate, 5mM 

TROLOX in PBS) 3 times before lysing the cells with 600uL of Lysis buffer (50mM Tris-

Cl pH 7.4, 500mM NaCl, 0.2% SDS, 1mM DTT, 10mM sodium azide, 10mM sodium 

ascorbate, 5mM TROLOX, cOmplete mini protease inhibitor tablets, in MS-grade H2O). 

Cells were transferred to 4C room and incubated on a nutator until all stimulations were 

finished. Cells were scraped into 1.5mL polystyrene microcentrifuge tubes and 

sonicated (QSonica Q800R2) for 14 minutes with alternating 1-minute on/30 seconds 

off cycles. Lysate was spun at 4C at max speed for 12 minutes, and the supernatant 

was diluted with one volume of 50mM Tris-HCl . Samples were dialyzed to remove 

excess biotin and detergents. Dialysis buffer composed as follows: 50mM Tris-Cl pH 

7.4, 250mM NaCl, 0.1% SDS, 1% Triton X-100 in H2O. Samples were loaded into 

SnakeSkin™ dialysis tubing (Thermo Fisher Scientific) and placed within a 2L dialysis 

chamber with a spin bar at 4C. Samples were dialyzed at 4C for 4 hours, with dialysis 

solution replaced every hour. After dialysis, the protein concentration was quantified 

using a Bio-Rad DCA assay, and a bead titration was carried out to determine the 

optimal volume of beads to use for complete pulldown of biotinylated proteins. We used 
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Streptavidin Sepharose High Performance (GE Healthcare Life Sciences) beads for 

Lamp1-APEX experiments, and Nanolink Streptavidin Magnetic beads (Solulink) for 

ANXA11-APEX experiments. After normalization of protein amount and determination of 

optimal bead volume for each sample, bead incubation occurred overnight with agitation 

at 4C. The next day, beads were washed with 4 sequential buffers (Buffer 1: 2% SDS; 

Buffer 2: 50mM Tris-HCl pH 7.4, 00mM NaCl, 0.1% deoxycholic acid, 1% Triton-X, 1mM 

EDTA; Buffer 3: 10mM Tris-HCl pH 7.4, 250mM NaCl, 0.5% deoxycholic acid, 0.5% NP-

40, 1mM EDTA; Buffer 4: 50mM Ammonium bicarbonate; all in ddH2O). Then, proteins 

were reduced (5mM TCEP, 30 minutes), alkylated (15mM iodoacetamide, 30 min), 

quenched (5mM DTT, 15 min), and digested on beads overnight for 14 hrs with 1ug of 

trypsin/LysC enzyme (Promega). The next morning, 0.5ug of trypsin/LysC was added 

and incubated for another 2 hours at 37C at 1200 rpm. Samples were separated from 

beads with either centrifugation or magnetic separation, the supernatant was acidified 

with 10% trifluoroacetic acid (TFA), and samples were desalted using C18 solid-phase 

extraction spin columns. After eluting samples in 50% acetonitrile (ACN)/0.1% TFA, they 

were dried down in a speedVac and then resuspended in 2% ACN/0.1% formic acid 

(FA) for subsequent LC-MS analysis. 

LC-MS analysis 
Peptide samples were analyzed on a Dionex UltiMate 3000 RSLCnano system 

coupled with a Thermo Scientific Q-Exactive HF mass spectrometer. Mobile phase A 

was 0.1% FA, 5% DMSO in H2O, and mobile phase B was 0.1% FA, 5% DMSO in ACN. 

Flow rate was 0.3 L/min. Peptide separation was achieved on a PepMap C18 column 

(2 M, 100Å, 75M25 cm) with a 120 min LC gradient. Top 15 data-dependent 

acquisition (DDA) was conducted, and the MS was scanned from m/z 350 to1500 at a 

resolving power (RP) of 120K. Parent masses were isolated (m/z 1.4 window) and 

fragmented with higher-energy collisional dissociation (HCD) with a normalized collision 

energy (NCE) of 27%. Dynamic exclusion time was 22.5 s. Automatic gain control 

(AGC) targets were 1 × 106 for MS and 2 × 105 for MS/MS acquisitions. Maximum 

injection times (maxIT) were 30 ms for MS and 35 ms for MS/MS. 

ANXA11 homology models 



 39 

 The full-length sequence of human ANXA11 (SWISSPROT code P50995) was 

submitted to the iTasser web server on 05/23/18 to identify suitable templates for 

structural modeling. The predicted secondary structure and unfolded nature of the 

resultant structural models confirmed the assignment of the N-terminal domain 

(residues 1-199) as unstructured. Template structures with good coverage of the C-

terminal segment were all annexins, of which the candidate with the highest similarity 

was human annexin A4 (~57 % identical residues). Among the available structures of 

ANXA4, PDB code 2ZOC has the highest resolution (2.0 Å) and contains four resolved 

calcium ions. To construct models of ANXA11 C-terminal domain with and without bound 

calcium ions, we used the pairwise sequence alignment obtained from iTasser (which is 

gapless for residues 5-319 of 2ZOC to residues 192-505 of ANXA11). Models were built 

using Modeller 9v19, with and without calcium ions in the same positions as in the 

template. Distance restraints were included in Modeller to optimize the calcium-oxygen 

interaction distances in the calcium binding sites, using upper bounds extracted from 

the equivalent interaction distances in the template. In each case, 100 models were built 

and ranked according to their MolPDF scores, which provides an assessment of the 

extent to which the model satisfies the restraints. We filtered out models with MolPDF 

scores outside the standard deviation obtained over all 100 models (excluding 9 and 14 

models for the apo and holo, respectively). The remaining models were filtered to 

consider only the 20 % models with the highest ProQ2 scores (> 0.928). The ProQ2 

score of the template is 1.005, for reference. Finally, we identified two models with the 

fewest backbone dihedral angles in the disallowed region of the Ramachandran plot, 

using PROCHECK. These models have 96.9 % and 96.5 % residues, respectively in the 

allowed regions of the Ramachandran plot, compared to 93.8 % for the template.  

Continuum electrostatics calculations 

Electrostatic potential surfaces were computed as follows. Partial charges and atomic 

radii were obtained for the model coordinate files using the PDB2PQR server v2.1.1, 

with the CHARMM force field, which includes calcium parameters. Poisson-Boltzmann 

electrostatic potentials were computed using the APBS plugin within Pymol using 

default parameters.   

Expression and purification of ANXA11 
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Constructs encoding ANXA11 residues 1-505 and its mutants (D40G, R235Q, 

R346C) , Annexin LC (aa1-185) and CTF (aa186-505), were either cloned into pOPINS 

vector containing an N-terminal His-Sumo Tag and a ULP protease cleavage site or in 

pACEBac2 vector with a TEV cleavable N-terminal MBP tag and an mCherry-6xHis-C-

terminal tag. ANXA11 (R235) mutant protein was highly aggregation prone and could 

not be purified, so no further in vitro studies were conducted with this mutant. His-Sumo 

tagged proteins were expressed in E. coli BL21(DE3) in TB autoinduction media by an 

overnight incubation at 25°C. Briefly, cells were centrifuged and lysed using a high 

pressure cell disruption system. Clarified lysate was loaded onto a Ni-Sepharose Excel 

column and purified using standard procedure. Protein containing eluates were pooled, 

and dialysed in 50mM HEPES pH 7.4, 100mM NaCl, and 5% glycerol buffer after 

addition of ULP protease to remove the His-Sumo Tag. Protein was further purified on a 

second Ni-sepharose column to remove the His-Sumo tag followed by a size-exclusion 

column and the fractions containing purified protein were pooled for all subsequent 

experiments. mCherry tagged Annexin WT and its mutants constructs were expressed 

and purified from insect Sf9 cells using standard procedures. After 6 days of infection 

cells were harvested and lysed by homogenising into a resuspension buffer containing 

50mM HEPES pH 7.4, 100mM NaCl, and 5% glycerol, 0.1% CHAPS. Cell Lysates were 

subjected to high speed centrifugation and the clarified lysate was subsequently purified 

using three steps purification protocol including, Ni- Sepharose Excel affinity resin, 

Amylose resin, followed by size exclusion chromatography in the buffer containing 50 

mM HEPES, 225mM NaCl pH 7.4.  
ANXA11 droplet assay 

Phase separation of ANXA11 WT and it mutants was initiated either by changing the 

temperature of the samples from 4°C to RT or by the addition of the crowding 

reagent,10% dextran. Purified ANXA11 protein concentration ranging from 0.1 μM-50 

μM in a total volume of 20 μL were deposited on 8-well glass bottom Ibidi slides, 

incubated at room temperature for ≥30 minutes before being imaged on a Zeiss Axiovert 

200M microscope with Improvision Openlab software using 100X magnification 

objective. ImageJ software was used in all image processing. For all purified proteins n 

≥ 3. 
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In vitro liposome RNA granule reconstitution assay 
     Stress granule cores were purified according to a previously-published method (Jain 

et al. 2016; Khong et al. 2017; Wheeler et al. 2017; Khong et al. 2018) from SH-SY5Y 

cells expressing Emerald-G3BP1 after 1h heat shock at 43oC. Stress granule cores 

were incubated with liposomes in the presence of 1 μM ANXA11 only, 500 μM calcium 

only, or both 1 μM ANXA11 and 500 μM calcium at 37oC for 1 hour.  

Liposome preparation  
Liposomes were prepared with commercially available lipid components from Avanti 

Polar Lipids. Liposome composition was 70% phosphatidylcholine (Avanti #850457C), 

24% phosphatidylethanolamine (Avanti #850757C), 5% cholesterol (Avanti #700000), 

and 1% phosphatidyl-3',5'-bisphosphate (Avanti 850164P). Powdered lipids were 

individually resuspended in chloroform, then mixed together in a glass sample vial and 

evaporated with a dry N2 stream. The mixture was resuspended in a buffered salt 

solution (10mM Na-HEPES, 50mM NaCl, 1mM EDTA, pH 7.4) for 30 minutes, and then 

sonicated in a water bath for 3 minutes to complete resuspension. The lipid mixtures 

were then extruded into large unilamellar vesicles (LUVs) using an Avanti Mini-Extruder 

(Avanti #610023) that was heated to 60oC. For the liposome preparation for microfluidic 

assay, The composition of liposomes without PIP is POPC: 49%, POPS: 10%, POPE: 

20%, SAPI: 15%, Cholesterol: 5% DOPE-ATTO647: 1%. The composition of liposomes 

with PIP3 is POPC: 49%, POPS: 10%, POPE: 20%, SAPI: 10%, PIP 5%, Cholesterol: 

5% DOPE-ATTO647: 1%. 

Giant unilamellar vesicles were prepared from 50% phosphocholine,  10% phospho-

L-serine: 20 % phosphoethanolamine , 10% phosphoinositol (Avanti #850144), 5% 

cholesterol, 5% phosphatidylinositol 3-phosphate(PI3P, Avanti  #850150), 0.05% 

ATTO488 labeled 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine- dissolved in 

chloroform using electroformation method in a Nanion Technologies Ves Prep pro setup 

(Nanion Technologies, Munich, Germany). The lipids were purchased from Avanti 

(Avanti Polar Lipids, Alabaster, USA). 

Liposome Flotation Assay 
 In a thick-wall polycarbonate tube, LUVs and recombinant annexin A11 protein 

were mixed to a final concentration of 0.5mM LUVs and 0.25uM protein in 100L of 
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buffered salt solution (see above). LUV-protein mixture (with or without 100M CaCl2 

added) was incubated for 1 hour at 4oC. Then, 100L of 60% sucrose in PBS was 

added and mixed gently to yield a 30% final sucrose concentration. 250L of 25% 

sucrose was overlaid atop the 30% sucrose layer, and then 50L of PBS was added as 

the final layer in the sucrose gradient. The gradient was centrifuged at 174,000 x g at 

4oC for 1 hour, and then the fractions (top 100L, middle 200L, and bottom 200L) 

were separated. Sample buffer was added to each layer and resolved by 

electrophoresis. 

Lipid strip assay 
        Membrane lipid binding analysis of GST tagged ANXA11 was conducted using 

membrane lipid Strips (Echelon Bioscience), with each spot containing 100 pmol of 

indicated lipids. Membrane were blocked by PBST with 3% BSA for 1hr at room 

temperature, followed by incubated with 0.25g/ml ANXA11-GST (LSBio) for 1hrs in 

blocking buffer, 50M CaCl2 or 1mM EGTA were added to the incubation solution as 

indicated. After washed 3 times with PBST, membrane was blotted with anti-GST 

antibody (ThermoFisher). 

Microfluidic setup and diffusion sizing assay 

The microfluidics setups used here have been described previously(Duffy et al., 

1998; Gang et al., 2018; Qin et al., 2010). For these studies, microfluidic devices were 

fabricated by using polydimethylsiloxane (PDMS) (Sylgard 184 kit, Dow Corning, 

Midland, MI, U.S.A) mixed with black carbon powder (Sigma-Aldrich, Poole, U.K.) to 

maximize the fluorescent signal. The channel is typically with 300 μm in width and 50 

μm in height. The devices were plasma-treated and modified with Tween 20 2% in 

ethanol solution prior to the measurements. The channels were flushed and prefilled 

with buffer. We loaded the sample and buffer at the inlets and withdraw liquid from the 

outlet using a glass syringe (Hamilton, Reno, NE, USA) mounted to a syringe pump 

(Cetoni neMESYS, Cetoni GmbH, Korbussen, Germany). 5 μM mCherry ANXA11 was 

first mixed with liposomes with 500 μM phosphate lipids at different concentrations of 

calcium chloride and then co-flown with the buffer along the channel. The fluorescent 

signal was collected at 4 points along the channel with different diffusion time in order to 

calculate the size of ANXA11. The images were obtained from an inverted microscope 
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(Axio Observer A1, Zeiss , Cambridge, U.K.) coupled to a CCD camera (Evolve 512, 

Photometrics, Tucson, AZ, USA). The hydrodynamic radii of ANXA11 binding to 

liposomes were measured at different calcium concentrations with a microfluidic 

diffusional sizing assay. Enhanced binding was detected from 50 to 1000 µM calcium 

concentration for liposomes with PI3P and from 100 to 5000 µM for those without PI3P. 

In independent experiments, the radius of ANXA11 were determined to be equal to 5.45 

± 0.3 nm. During the short duration of diffusion experiments there was no observed 

influence of calcium ions on protein size, the radius of ANXA11 was 5.51 ± 0.6 nm in the 

presence of 500 µM CaCl2 and 5.27 ± 0.5 nm in the presence of 13.75 mM CaCl2. The 

radius of lipid vesicles was measured to be 14.7 ± 1.1 nm and did not significantly 

change in the presence of calcium concentrations used in the binding experiments. 

Poly A RNA in situ hybridization, single molecule FISH (smFISH) and 
immunofluorescence staining 
        In brief, cells were fixed with 4% paraformaldehyde for 10 mins, then 100% cold 

methanol for 10 mins and followed by 70% ethanol for 10 mins for rehydration, cells 

were then incubated with 1M Tris pH8.0 for 5 mins before incubated with 1ng/l Cy3-

Oligo-dT (30) for rat beta-actin in hybridization buffer (2xSSC with 1mg/mL Yeast tRNA, 

0.005% BSA, 10% Dextran sulfate, 25% formamide) in 37oC overnight. For single 

molecule FISH, rat ActB-Quasar570 smFISH probes were designed using the Stellaris 

Probe Designer software (Biosearch Technologies), smFISH was performed according 

to manufacturer’s instruction using Stellaris buffers (Biosearch Technologies SMF-HB1-

10, SMF-WA1-60 and SMF-WB1-20). After hybridization, cells were washed with 4xSSC 

and 2xSSC once each, and incubated with primary antibody in 2xSSC+ 0.1% triton-X-

100 at 4oC overnight, then washed 3 times with 2xSSC and incubated with fluorescence 

labeled secondary antibody in 2xSSC+ 0.1% triton-X-100 at room temperature for 1hr. 

Coverslips were mounted and imaged with Zeiss Airyscan.  

Live cell imaging 
        Live cell imaging was carried out in phenol red free normal culture medium. For 

U2OS cells, imaging was performed using Zeiss 880 LSM with Airyscan, plan-

apochromatic 63x oil objective (NA=1.4), images were processed with Airyscan 

processing in ZEN software (Zeiss). Axonal trafficking imaging was performed using 



 44 

Nikon spinning disk equipped with 100x oil objective lens (NA=1.4). Time-lapse movies 

of axons were then acquired at 100ms/frame for 30 seconds and displayed in 

kymograph format. 

EM imaging of LAMP1-APEX2 
i3Neurons stably expressing LAMP1-APEX2 were fixed with 2% glutaraldehyde 

(Electron Microscopy Services) in EM buffer (0.1 N sodium cacodylate at pH 7.4 with 2 

mM calcium chloride) for 30 minutes. Cells were washed 3X with EM buffer and then 

exposed to ImmPACT DAB solution (Vector Labs) for 10 minutes. Samples were 

washed with EM buffer an additional 3X and then fixed with 2% glutaraldehyde for at 

least an additional 48 hrs. Samples were washed with buffer and treated with 1% 

reduced osmium tetroxide in 0.1 N cacodylate buffer at pH 7.4 for 1 h on ice, washed 

and en bloc stained with 0.25–1% uranyl acetate in 0.1 N acetate buffer at pH 5.0 

overnight at 4°C, dehydrated with a series of graded ethanol and finally embedded in 

epoxy resins. Ultrathin sections (70 nm) were stained with lead citrate and imaged with 

a JEOL 1200 EXII Transmission Electron Microscope. 

Correlative Light-Electron Microscopy 
        U2OS cells were plated on glass gridded coverslips (Electron Microscopy 

Sciences, Hatfield, PA) and transfected with indicated plasmids. 24hrs after transfection, 

cells were fixed in 2% glutaraldehyde, 2 mM CaCl2 in 0.08 M sodium cacodylate buffer, 

pH 7.2 at RT for 10 minutes and imaged on Zeiss Airyscan to collect light microscopy 

images. Cells were kept in fixative at 4oC for 16hrs and postfixed in 2% osmium 

tetroxide-1.25% potassium ferrocyanide in cacodylate buffer for 30 min followed by 2% 

osmium in cacodylate buffer for another 30 min and processed for Epon embedding. 

Cells imaged by Airyscan were localized on the grid (imprinted in the Epon block). 

Ultrathin sections (60 nm) from the imaged cells were cut and post-stained with uranyl 

acetate/lead citrate and imaged in a Tecnai 12 electron microscope (FEI, Hillsboro, OR) 

operating at 80kV equipped with an Ultrascan 4000 digital camera (Gatan Inc, CA). 

Zebrafish Axonal Imaging 

Zebrafish axonal transport analyses were done as previously described(Drerup and 

Nechiporuk, 2016; Mandal et al., 2018). Briefly, zygotes were injected with plasmid DNA 

encoding fluorescently tagged cargos of interest with expression driven by the 
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5kbneurod promoter (Mandal et al., 2018). At 3 days post-fertilization (dpf) embryos 

were sorted under epifluorescence to identify individuals with tagged cargo expression 

in a few cells of the pLL ganglion. For imaging, embryos were mounted in 1.5% low 

melting point agarose on a glass coverslip, submerged in embryo media containing 

0.02% tricaine and imaged using a 63X/NA=1.2 water objective on an upright LSM800 

confocal microscope (Zeiss). A region of interest (30-200 μm) for each embryo was 

selected in the pLL nerve in which a long stretch of axon was observable in a single 

plane. Scans were taken at 3 frames per second for 500 to 1000 frames.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
Imaging Analysis 
For line scan analysis in U2OS cells (Figure 3E, 3I, 4G, 6B, supplemental 3D, 3E, 3F, 

6H), straight line across the RNA granule were drawn as ROI, intensity of ROI from 

each channel were calculated by plot profile tool in Fiji. Fields of view for imaging 

were randomly chosen. For FRAP analysis in U2OS cells (Figure 3C, 4B, supplemental 

4I), three images were acquired prior to photobleaching followed by imaging over the 

course of recovery. Relative intensity of the photobleached ROI were calculated by 

substracting mean intensity of the background from the photobleached ROI region, 

followed by normalized to the mean intensity of the pre-bleach ROI, n represented 

number of ROI. For co-localization analysis (Figure 3E, 3I, 4H, 5B, 5D, supplemental 

1G, 3E, 3F, 4E, 5B, 6B, 6C, 6G), RNA granule or organelles signals were segmented 

using trainable weka segmentation plugin in Fiji, area of colocalization were calculated 

by applying ’AND’ function in image calculator tool for the segmented signals, 

colocalization were determine by >1 pixel overlapping of segmented signal using 

analyze particle tool in Fiji, n represented number of cells. Image acquisition 

and analysis for ANXA11(FL, N-, C-)-RNA granule-lysosome colocalization studies were 

blinded. For trafficking analysis in U2OS (Figure1B, supplemental Figure 1C,1D,1E), 

RNA granule or organelles signals were segmented using trainable weka segmentation 

plugin in Fiji, trajectory of the segmented signals’ centroid were analyzed by Trackmate 

plugin in Fiji, n represents number of cells (Figure 1B) or number of trajectories 

(supplemental Figure 1C,1D,1E). For in vitro RNA granule liposomes reconstitution 
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analysis (Figure6E), images were processed in Fiji using a custom macro. The liposome 

channel was initially gaussian blurred (sigma radius 1.5) to remove shot noise, 

thresholded and masked. The integrated fluorescence intensity of the G3BP1 channel 

within the liposome mask was calculated and normalized to the mask area, n represents 

number of independent experiments. For smFISH signal quantification in growthcone 

(Figure 6J, 7D, supplemental Figure 7C, 7D), areas of growthcone were masked, 

smFISH signal within masked area were segmented using trainable weka segmentation 

plugin in Fiji. Number of segmented smFISH signal were counted using analyze particle 

tool in Fiji, n represented number of growthcones. For rat axonal trafficking analysis 

(Figure 5F, 6H, 7B, Supplemental Figure 1L, 1M, 1N, 5C, 6E, 7B), axonal images were 

straightened, resliced in Fiji to generate kymograph, trajectory of vesicles were 

analyzed by Trackmate plugin in Fiji. Co-trafficking events were defined using the cut-off 

of net displacement >10μm, n represents number of neurons. For zebrafish axonal 

imaging analysis (Figure 7H, Supplemental Figure7E, F, G), embryos expressing both 

constructs in a single cell were selected and imaged sequentially. Transport parameters 

were analyzed using kymograph analysis in the Metamorph software package 

(Molecular Devices), n represents number of zebrafish. Imaging statistical analysis were 

performed using Graphpad Prism 5. For statistical testing, t-tests and ANOVA tests 

were employed on samples with large size (>30); violation of the normality assumption 

were not taken into account because of central limit theorem. F-test was used to access 

the equality of variances of t-test, Bartlett test was use to access the equality 

of variances of ANOVA test. 

LC-MS Data Analysis 
LC-MS/MS (Figure 2D, 2E) raw files were processed by MaxQuant1.6.2.3 software 

(Tyanova et al. 2016) for peptide/protein identification and quantification. MS and 

MS/MS spectra were searched against the Uniprot human proteome database for 

identification with a false discovery rate cutoff level of 1%. Cysteine 

carbamidomethylation was searched as a fixed modification, and protein N-terminal 

acetylation, methionine oxidation as variable modifications. Maxquant output files were 

further analyzed by MS-Stats in R (Choi et al., 2014) for statistical analysis. ToppGene 

Suite ((http://toppgene.cchmc.org) was used for Go-term analysis (Chen et al., 2009).  
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Fitting of the Diffusional Sizing assay 

Diffusional sizing experiments (Figure 2Q) were analyzed using custom written 

script based on previous study (Gang et al. 2018) with minor modifications. 

Concentration profiles were obtained from fluorescence images at 4 positions 

corresponding to 4 different diffusion times and diffusional profiles were fitted to one-

Gaussian model. Hill cooperative binding model was used to fit the change in 

hydrodynamic radius upon ANXA11 binding to lipid vesicles and determine the binding 

constant (equation 1): 

𝒚 = 𝒂 + (𝒃 − 𝒂)
[𝑪𝒂]𝒏

𝑲𝑫
𝒏+[𝑪𝒂]𝒏

  (1) 

Where a is radius of unbound ANXA11, b is radius of vesicle-protein complex, [Ca] is 

calcium concentration in solution, KD is dissociation constant (in M) and n is number of 

cooperative Ca binding sites. OriginPro 2016 was used to fit the experimental data. 

 

DATA AND CODE AVAILABILITY 
Mass spectrometry-based proteomics datasets have been deposited to the PeptideAtlas 

website with the dataset identifier PASS01313 

(http://www.peptideatlas.org/PASS/PASS01313). All other data are either available in 

the main article or in supplemental files. 

 
Supplemental Video 1. RNA granule/lysosome co-trafficking in U2OS cells. 
Related to Figure 1. 
 
Supplemental Video 2. mRNA co-trafficking with lysosomes in U2OS cells. 
Related to Figure 1. 
 
Supplemental Video 3. Opto-ANXA11 associated with RNA granules and 
lysosomes. Related to Figure 6. 
 
Supplemental Video 4. RNA granule co-trafficking with lysosomes and ANXA11 in 
primary rat neuron axons. Related to Figure 7. 
 

http://www.peptideatlas.org/PASS/PASS01313
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Supplemental Video 5. ALS-associated ANXA11 mutations disrupt RNA 
granule/lysosome co-trafficking in primary rat neuron axons. Related to Figure 7. 
 
Supplemental Video 6. Caprin co-trafficking with lysosomes in zebrafish axons. 
Related to Figure 7. 
 
Supplemental Video 7. Caprin co-trafficking with ANXA11 in zebrafish axons. 
Related to Figure 7. 
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