118 research outputs found

    Neutrophil–Lymphocyte and Platelet–Lymphocyte Ratios as Prognostic Factors after Stereotactic Radiation Therapy for Early-Stage Non–Small-Cell Lung Cancer

    Get PDF
    IntroductionThe hematologic indices of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are correlated with clinical outcomes after stereotactic radiation.MethodsWe retrospectively evaluated the pretreatment NLR and PLR in patients treated with stereotactic radiation for early stage non–small-cell lung cancer at our institution. A total of 149 patients treated for non–small-cell lung cancer were identified, and 59 had stage I disease with neutrophil, platelet, and lymphocyte levels within a 3-month period before treatment. Receiver operating characteristic (ROC) analysis was performed to examine cutoff values for survival and nonlocal failure followed by Kaplan–Meier analysis for survival.ResultsWith a median follow-up of 17 months, 28 deaths were observed, and the median overall survival for all patients was 43 months. Based on the ROC analysis, NLR and PLR cutoff values for further survival analysis were determined based on the ROC analysis to be 2.98 and 146. The median overall survival was not reached for patients with low NLR or PLR but the survival was 23 months for patients with high NLR or PLR. There was no correlation between NLR and nonlocal failure, but on multivariate analysis PLR was found to be associated with freedom from nonlocal failure. Nonlocal failure rates were 11% for patients with PLR less than 250 and 58% for PLR greater than 250 (p < 0.001).ConclusionThe pretreatment NLR and PLR represented significant prognostic indicators of survival in patients treated for early-stage non–small-cell lung carcinoma with stereotactic radiation. The PLR may be used as a prognostic indicator for nonlocal failure after stereotactic radiation for early-stage lung cancer

    Learning Shape Priors for Single-View 3D Completion and Reconstruction

    Full text link
    The problem of single-view 3D shape completion or reconstruction is challenging, because among the many possible shapes that explain an observation, most are implausible and do not correspond to natural objects. Recent research in the field has tackled this problem by exploiting the expressiveness of deep convolutional networks. In fact, there is another level of ambiguity that is often overlooked: among plausible shapes, there are still multiple shapes that fit the 2D image equally well; i.e., the ground truth shape is non-deterministic given a single-view input. Existing fully supervised approaches fail to address this issue, and often produce blurry mean shapes with smooth surfaces but no fine details. In this paper, we propose ShapeHD, pushing the limit of single-view shape completion and reconstruction by integrating deep generative models with adversarially learned shape priors. The learned priors serve as a regularizer, penalizing the model only if its output is unrealistic, not if it deviates from the ground truth. Our design thus overcomes both levels of ambiguity aforementioned. Experiments demonstrate that ShapeHD outperforms state of the art by a large margin in both shape completion and shape reconstruction on multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://shapehd.csail.mit.edu

    Differential changes in gene expression in human neutrophils following TNF-α stimulation: Up-regulation of anti-apoptotic proteins and down-regulation of proteins involved in death receptor signaling.

    Get PDF
    Responses of human neutrophils to TNF-α are complex and multifactorial. Exposure of human neutrophils to TNF-α in vitro primes the respiratory burst, delays apoptosis and induces the expression of several genes including chemokines, and TNF-α itself. This study aimed to determine the impact of TNF-α exposure on the expression of neutrophil genes and proteins that regulate apoptosis. Quantitative PCR and RNA-Seq, identified changes in expression of several apoptosis regulating genes in response to TNF-α exposure. Up-regulated genes included TNF-α itself, and several anti-apoptotic genes, including BCL2A1, CFLAR (cFLIP) and TNFAIP3, whose mRNA levels increased above control values by between 4-20 fold (n = 3, P < 0.05). In contrast, the expression of pro-apoptotic genes, including CASP8, FADD and TNFRSF1A and TNFRSF1B, were significantly down-regulated following TNF-α treatment. These changes in mRNA levels were paralleled by decreases in protein levels of caspases 8 and 10, TRADD, FADD, TNFRSF1A and TNFRSF1B, and increased cFLIP protein levels, as detected by western blotting. These data indicate that when neutrophils are triggered by TNF-α exposure, they undergo molecular changes in transcriptional expression to up-regulate expression of specific anti-apoptotic proteins and concomitantly decrease expression of specific proteins involved in death receptor signaling which will alter their function in TNF-α rich environments

    Clinical outcomes of patients with corticosteroid refractory immune checkpoint inhibitor induced enterocolitis treated with infliximab

    Get PDF
    Introduction Immune Checkpoint Inhibitors (CPI) have changed the treatment landscape for many cancers, but also cause severe inflammatory side effects including enterocolitis. CPI-induced enterocolitis is treated empirically with corticosteroids, and infliximab (IFX) is used in corticosteroid-refractory cases. However, robust outcome data for these patients are scarce. Methods We conducted a multi-centre (six cancer centres), cohort study of outcomes in patients treated with IFX for corticosteroid-refractory CPI-induced enterocolitis between 2007 and 2020. The primary outcome was corticosteroid-free clinical remission (CFCR) with CTCAE grade 0 for diarrhoea at 12 weeks after IFX initiation. We also assessed cancer outcomes at one year using RECIST criteria. Results 127 patients (73 male; median age 59 years) were treated with IFX for corticosteroid-refractory CPI-induced enterocolitis. Ninety-six (75.6%) patients had diarrhoea CTCAE grade >2 and 115 (90.6%) required hospitalisation for colitis. CFCR was 41.2% at 12 weeks and 50.9% at 26 weeks. In multivariable logistical regression, IFX-resistant enterocolitis was associated with rectal bleeding (OR 0.19; 95% CI 0.04-0.80; p=0.03) and absence of colonic crypt abscesses (OR 2.16; 95% CI 1.13-8.05; p=0.03). Cancer non-progression was significantly more common in patients with IFX-resistant enterocolitis (64.4%) as compared to patients with IFX-responsive enterocolitis (37.5%; p=0.013). Conclusion This is the largest study to date reporting outcomes of IFX therapy in patients with corticosteroid-refractory CPI-induced enterocolitis. Utilizing pre-defined robust endpoints, we have demonstrated that fewer than half of patients achieved CFCR. Our data also indicate that cancer outcomes may be better in patients developing prolonged and severe inflammatory side effects of CPI-therapy

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth.

    Get PDF
    BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive type of liver cancer in urgent need of treatment options. Aberrant activation of the c-Jun N-terminal kinase (JNK) pathway is a key feature in ICC and an attractive candidate target for its treatment. However, the mechanisms by which constitutive JNK activation promotes ICC growth, and therefore the key downstream effectors of this pathway, remain unknown for their applicability as therapeutic targets. Our aim was to obtain a better mechanistic understanding of the role of JNK signaling in ICC that could open up therapeutic opportunities. APPROACH AND RESULTS: Using loss-of-function and gain-of-function studies in vitro and in vivo, we show that activation of the JNK pathway promotes ICC cell proliferation by affecting the protein stability of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a key driver of tumorigenesis. PIN1 is highly expressed in ICC primary tumors, and its expression positively correlates with active JNK. Mechanistically, the JNK kinases directly bind to and phosphorylate PIN1 at Ser115, and this phosphorylation prevents PIN1 mono-ubiquitination at Lys117 and its proteasomal degradation. Moreover, pharmacological inhibition of PIN1 through all-trans retinoic acid, a Food and Drug Administration-approved drug, impairs the growth of both cultured and xenografted ICC cells. CONCLUSIONS: Our findings implicate the JNK-PIN1 regulatory axis as a functionally important determinant for ICC growth, and provide a rationale for therapeutic targeting of JNK activation through PIN1 inhibition

    A myeloid program associated with COVID-19 severity is decreased by therapeutic blockade of IL-6 signaling

    Get PDF
    Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGE hi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS. </p

    A myeloid program associated with COVID-19 severity is decreased by therapeutic blockade of IL-6 signaling

    Get PDF
    Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.</p

    A myeloid program associated with COVID-19 severity is decreased by therapeutic blockade of IL-6 signaling

    Get PDF
    Altered myeloid inflammation and lymphopenia are hallmarks of severe infections. We identified the upregulated EN-RAGE gene program in airway and blood myeloid cells from patients with acute lung injury from SARS-CoV-2 or other causes across 7 cohorts. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGEhi myeloid cells express features consistent with suppressor cell functionality, including low HLA-DR and high PD-L1. Sustained EN-RAGE program expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell dysfunction markers. IL-6 upregulated many EN-RAGE program genes in monocytes in vitro. IL-6 signaling blockade by tocilizumab in a placebo-controlled clinical trial led to rapid normalization of EN-RAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.</p
    corecore