1,691 research outputs found

    Induction and subversion of human protective immunity: contrasting influenza and respiratory syncytial virus

    Get PDF
    Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines

    Basel risk weights, asset correlations, and book-to-market equity: evidence from Asian countries

    Full text link
    We examine the effect of firm book-to-market equity values (BE/ME) on asset correlations which play an important role in determining risk weights under the current Basel capital requirements. Using firms in China, Hong Kong, Japan, Korea, Singapore and Taiwan over a sample period from 1988 to 2013, we find that BE/ME has a negative effect on asset correlations. This suggests a role for BE/ME as an additional factor in determining asset correlations, and thus risk weights, also potentially reducing incentives for regulatory capital arbitrage

    Sharp Global Bounds for the Hessian on Pseudo-Hermitian Manifolds

    Full text link
    We find sharp bounds for the norm inequality on a Pseudo-hermitian manifold, where the L^2 norm of all second derivatives of the function involving horizontal derivatives is controlled by the L^2 norm of the sub-Laplacian. Perturbation allows us to get a-priori bounds for solutions to sub-elliptic PDE in non-divergence form with bounded measurable coefficients. The method of proof is through a Bochner technique. The Heisenberg group is seen to be en extremal manifold for our inequality in the class of manifolds whose Ricci curvature is non-negative.Comment: 13 page

    Interim estimates of the effectiveness of influenza vaccination against influenza-associated hospitalization in children in Hong Kong, 2015-16

    Get PDF
    From 1 September 2015 through 31 January 2016, we enrolled 2068 children 6 months to 17 years of age admitted to hospital with a febrile acute respiratory infection in our test-negative study. Information on receipt of 2015-16 northern hemisphere inactivated influenza vaccination was elicited from parents or legal guardians. Using conditional logistic regression adjusting for age and matching on calendar time, we estimated influenza vaccine effectiveness against hospitalization with influenza A or B to be 79.2% (95% confidence interval: 42.0%-92.4%). Annual influenza vaccination should be more widely used in children in Hong Kong. This article is protected by copyright. All rights reserved.published_or_final_versio

    Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure.

    Get PDF
    Stimuli-responsive behaviors of flexible metal-organic frameworks (MOFs) make these materials promising in a wide variety of applications such as gas separation, drug delivery, and molecular sensing. Considerable efforts have been made over the last decade to understand the structural changes of flexible MOFs in response to external stimuli. Uniform pore deformation has been used as the general description. However, recent advances in synthesizing MOFs with non-uniform porous structures, i.e. with multiple types of pores which vary in size, shape, and environment, challenge the adequacy of this description. Here, we demonstrate that the CO2-adsorption-stimulated structural change of a flexible MOF, ZIF-7, is induced by CO2 migration in its non-uniform porous structure rather than by the proactive opening of one type of its guest-hosting pores. Structural dynamics induced by guest migration in non-uniform porous structures is rare among the enormous number of MOFs discovered and detailed characterization is very limited in the literature. The concept presented in this work provides new insights into MOF flexibility

    A simple and rapid approach for screening of SARS-coronavirus genotypes: an evaluation study

    Get PDF
    BACKGROUND: The Severe Acute Respiratory Syndrome (SARS) was a newly emerged infectious disease which caused a global epidemic in 2002–2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution. However, direct sequencing analysis of a large number of clinical samples is cumbersome and time consuming. We present here a simple and rapid assay for the screening of SARS-coronavirus genotypes based on the use of fluorogenic oligonucleotide probes for allelic discrimination. METHODS: Thirty SARS patients were recruited. Allelic discrimination assays were developed based on the use of fluorogenic oligonucleotide probes (TaqMan). Genotyping of the SARS-coronavirus isolates obtained from these patients were carried out by the allelic discrimination assays and confirmed by direct sequencing. RESULTS: Genotyping based on the allelic discrimination assays were fully concordant with direct sequencing. All of the 30 SARS-coronavirus genotypes studied were characteristic of genotypes previously documented to be associated with the latter part of the epidemic. Seven of the isolates contained a previously reported major deletion but in patients not epidemiologically related to the previously studied cohort. CONCLUSION: We have developed a simple and accurate method for the characterization and screening of SARS-coronavirus genotypes. It is a promising tool for the study of epidemiological relationships between documented cases during an outbreak

    Absence of association between angiotensin converting enzyme polymorphism and development of adult respiratory distress syndrome in patients with severe acute respiratory syndrome: a case control study

    Get PDF
    BACKGROUND: It has been postulated that genetic predisposition may influence the susceptibility to SARS-coronavirus infection and disease outcomes. A recent study has suggested that the deletion allele (D allele) of the angiotensin converting enzyme (ACE) gene is associated with hypoxemia in SARS patients. Moreover, the ACE D allele has been shown to be more prevalent in patients suffering from adult respiratory distress syndrome (ARDS) in a previous study. Thus, we have investigated the association between ACE insertion/deletion (I/D) polymorphism and the progression to ARDS or requirement of intensive care in SARS patients. METHOD: One hundred and forty genetically unrelated Chinese SARS patients and 326 healthy volunteers were recruited. The ACE I/D genotypes were determined by polymerase chain reaction and agarose gel electrophoresis. RESULTS: There is no significant difference in the genotypic distributions and the allelic frequencies of the ACE I/D polymorphism between the SARS patients and the healthy control subjects. Moreover, there is also no evidence that ACE I/D polymorphism is associated with the progression to ARDS or the requirement of intensive care in the SARS patients. In multivariate logistic analysis, age is the only factor associated with the development of ARDS while age and male sex are independent factors associated with the requirement of intensive care. CONCLUSION: The ACE I/D polymorphism is not directly related to increased susceptibility to SARS-coronavirus infection and is not associated with poor outcomes after SARS-coronavirus infection

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    A local survey on skeletal related complications in patients with carcinoma of prostate having hormonal therapy

    Get PDF
    Moderated Poster (Free Paper) Session I - Prostate : Benign and Malignant: MP.1-5香港泌尿外科學會published_or_final_versionThe 17th Annual Scientific Meeting of the Hong Kong Urological Association, Hong Kong, 6 November 2011. In Program Book, 2011, p. 5
    • …
    corecore