18 research outputs found

    The mass function dependence on the dynamical state of dark matter haloes

    Full text link
    Galaxy clusters are luminous tracers of the most massive dark matter haloes in the Universe. To use them as a cosmological probe, a detailed description of the properties of dark matter haloes is required. We characterize how the dynamical state of haloes impacts the halo mass function at the high-mass end. We used the dark matter-only MultiDark suite of simulations and the high-mass objects M > 2.7e13 M/h therein. We measured mean relations of concentration, offset, and spin as a function of halo mass and redshift. We investigated the distributions around the mean relations. We measured the halo mass function as a function of offset, spin, and redshift. We formulated a generalized mass function framework that accounts for the dynamical state of the dark matter haloes. We confirm the discovery of the concentration upturn at high masses and provide a model that predicts the concentration for different values of mass and redshift with one single equation. We model the distributions around the mean concentration, offset, and spin with modified Schechter functions. The concentration of low-mass haloes shows a faster redshift evolution compared to high-mass haloes, especially in the high-concentration regime. The offset parameter is smaller at low redshift, in agreement with the relaxation of structures at recent times. The peak of its distribution shifts by a factor of 1.5 from z = 1.4 to z = 0. The individual models are combined into a comprehensive mass function model, as a function of spin and offset. Our model recovers the fiducial mass function with 3% accuracy at redshift 0 and accounts for redshift evolution up to z = 1.5. This approach accounts for the dynamical state of the halo when measuring the halo mass function. It offers a connection with dynamical selection effects in galaxy cluster observations. This is key toward precision cosmology using cluster counts as a probe.Comment: to be published in Astronomy&Astrophysic

    CODEX: Role of velocity substructure in the scaling relations of galaxy clusters

    Full text link
    The use of galaxy clusters as cosmological probes relies on a detailed understanding of their properties. We aim to update the spectroscopic cluster identification of CODEX by running the spectroscopic group finder on the follow-up spectroscopy results and connecting the dynamical state of clusters to their scaling relations. We implemented a reproducible spectroscopic membership determination and cleaning procedures, based on the redMaPPer membership, running the spectroscopic group finder on the follow-up spectroscopy results and cleaning the membership for spectroscopic outliers. We applied the Anderson-Darling test for velocity substructure and analysed its influence on the scaling relations. We also tested the effect of the X-ray-to-optical centre offset on the scaling relations. We report on the scaling relations between richness, X-ray luminosity, and velocity dispersion for a complete sample of clusters with at least 15 members. Clusters with velocity substructure exhibit enhanced velocity dispersion for a given richness and are characterized by 2.5 times larger scatter. Clusters that have a strong offset in X-ray-to-optical centres have comparable scaling relations as clusters with substructure. We demonstrate that there is a consistency in the parameters of the scaling relations for the low- and high-richness galaxy clusters. Splitting the clusters by redshift, we note a decrease in scatter with redshift in all scaling relations. We localize the redshift range where a high scatter is observed to z<0.15z<0.15, which is in agreement with the literature results on the scatter. We note that the increase in scatter for both high- and low-luminosity clusters is z<0.15z<0.15, suggesting that both cooling and the resulting active galactic nucleus feedback are at the root of this scatter. Abridged.Comment: 23 pages, A&A in press, catalogs are released through CD

    SPIDERS : overview of the X-ray galaxy cluster follow-up and the final spectroscopic data release

    Get PDF
    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a large spectroscopic programme for X-ray selected galaxy clusters as part of the Sloan Digital Sky Survey-IV (SDSS-IV). We describe the final data set in the context of SDSS Data Release 16 (DR16): the survey overall characteristics, final targeting strategies, achieved completeness, and spectral quality, with special emphasis on its use as a galaxy cluster sample for cosmology applications. SPIDERS now consists of about 27 000 new optical spectra of galaxies selected within 4000 photometric red sequences, each associated with an X-ray source. The excellent spectrograph efficiency and a robust analysis pipeline yield a spectroscopic redshift measurement success rate exceeding 98 per cent, with a median velocity accuracy of 20 kms(-1) (at z = 0.2). Using the catalogue of 2740 X-ray galaxy clusters confirmed with DR16 spectroscopy, we reveal the 3D map of the galaxy cluster distribution in the observable Universe up to z similar to 0.6. We highlight the homogeneity of the member galaxy spectra among distinct regions of the galaxy cluster phase space. Aided by accurate spectroscopic redshifts and by a model of the sample selection effects, we compute the galaxy cluster X-ray luminosity function and we present its lack of evolution up to z = 0.6. Finally we discuss the prospects of forthcoming large multiplexed spectroscopic programmes dedicated to follow up the next generation of all-sky X-ray source catalogues.Peer reviewe

    CODEX: Role of velocity substructure in the scaling relations of galaxy clusters

    Get PDF
    Context. The use of galaxy clusters as cosmological probes relies on a detailed understanding of their properties. They define cluster selection and ranking linked to a cosmologically significant cluster mass function. Previous studies have employed small samples of clusters, concentrating on achieving the first calibrations of cluster properties with mass, while the diversity of cluster properties has been revealed via detailed studies. Aims. The large spectroscopic follow-up on the CODEX cluster sample with SDSS and NOT enables a detailed study of hundreds of clusters, lifting the limitations of previous samples. We aim to update the spectroscopic cluster identification of CODEX by running the spectroscopic group finder on the follow-up spectroscopy results and connecting the dynamical state of clusters to their scaling relations. Methods. We implemented a reproducible spectroscopic membership determination and cleaning procedures, based on the redMaPPer membership, running the spectroscopic group finder on the follow-up spectroscopy results and cleaning the membership for spectroscopic outliers. We applied the Anderson-Darling test for velocity substructure and analysed its influence on the scaling relations. We also tested the effect of the X-ray-to-optical centre offset on the scaling relations. Results. We report on the scaling relations between richness, X-ray luminosity, and velocity dispersion for a complete sample of clusters with at least 15 members. Clusters with velocity substructure exhibit enhanced velocity dispersion for a given richness and are characterized by 2.5 times larger scatter. Clusters that have a strong offset in X-ray-to-optical centres have comparable scaling relations as clusters with substructure. We demonstrate that there is a consistency in the parameters of the scaling relations for the low- and high-richness galaxy clusters. Splitting the clusters by redshift, we note a decrease in scatter with redshift in all scaling relations. We localize the redshift range where a high scatter is observed to z < 0.15, which is in agreement with the literature results on the scatter. We note that the increase in scatter for both high- and low-luminosity clusters is z < 0.15, suggesting that both cooling and the resulting active galactic nucleus feedback are at the root of this scatter

    CODEX clusters : Survey, catalog, and cosmology of the X-ray luminosity function

    Get PDF
    Context. Large area catalogs of galaxy clusters constructed from ROSAT All-Sky Survey provide the basis for our knowledge of the population of clusters thanks to long-term multiwavelength efforts to follow up observations of these clusters.Aims. The advent of large area photometric surveys superseding previous, in-depth all-sky data allows us to revisit the construction of X-ray cluster catalogs, extending the study to lower cluster masses and higher redshifts and providing modeling of the selection function.Methods. We performed a wavelet detection of X-ray sources and made extensive simulations of the detection of clusters in the RASS data. We assigned an optical richness to each of the 24 788 detected X-ray sources in the 10 382 square degrees of the Baryon Oscillation Spectroscopic Survey area using red sequence cluster finder redMaPPer version 5.2 run on Sloan Digital Sky Survey photometry. We named this survey COnstrain Dark Energy with X-ray (CODEX) clusters.Results. We show that there is no obvious separation of sources on galaxy clusters and active galactic nuclei (AGN) based on the distribution of systems on their richness. This is a combination of an increasing number of galaxy groups and their selection via the identification of X-ray sources either by chance or by groups hosting an AGN. To clean the sample, we use a cut on the optical richness at the level corresponding to the 10% completeness of the survey and include it in the modeling of the cluster selection function. We present the X-ray catalog extending to a redshift of 0.6.Conclusions. The CODEX suvey is the first large area X-ray selected catalog of northern clusters reaching fluxes of 10(-13) ergs s(-1) cm(-2). We provide modeling of the sample selection and discuss the redshift evolution of the high end of the X-ray luminosity function (XLF). Our results on z<0.3 XLF agree with previous studies, while we provide new constraints on the 0.3<z<0.6 XLF. We find a lack of strong redshift evolution of the XLF, provide exact modeling of the effect of low number statistics and AGN contamination, and present the resulting constraints on the flat CDM.Peer reviewe

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).Peer reviewe
    corecore