193 research outputs found

    Prevalence of salmonella spp., salmonella typhimurium, escherichia coli and escherichia coli O157:|bH7 from bats, birds, soil and water in the selected study sites at Sarawak

    Get PDF
    A total of 235 samples collected from bats, birds, water and soil of Sebangkoi Recreation Park, Kubah National Park and Bako National Park in Sarawak were studied for the presence of Salmonella spp., Salmonella Typhimurium, Escherichia coli and Escherichia coli 0157: H7. Among the samples, 12% (28/235) and 14% (33/235) were identified with the presence of Salmonella spp. and E. coli respectively. Further confirmation using Polymerase Chain Reaction (PCR) indicated that 11% (3/28) of Salmonella Typhimurium, 3% (1/33) of E. coli 0157: H7 and 18% (6/33) E. coli 0157 were present in the samples. Besides, antibiotic resistance analysis for Salmonella spp. showed that there were 56% (14/25),92% (23/25), 0% (0/25), 4% (1125), 8% (2/25), 56% (I4125) and 12% (3/25) of the Salmonella isolates were resistant to ampicillin, cephalothin, chloramphenicol, doxycycline, gentamicin, nitrofurantoin and streptomycin respectively. On the other hand, the E. coli isolates had 18% (6/33), 42% (14/33), 3% (1/33),0% (0/33), 9% (3/33), 18% (6/33) and 30% (10/33) resistant to ampicillin, cephalothin, chloramphenicol, doxycycline, gentamicin, nitrofurantoin and streptomycin respectively. Then, the lowest and the highest multiple antibiotic resistance (MAR) index for Salmonella spp. and E. coli isolates were in the ranged from 0.1 to 0.7 which were resistant to at least one and the most five of the antimicrobial agents used. Furthermore, the MAR analysis revealed that 87% (20/23) of Salmonella isolates and 67% (12/18) of E. coli isolates had MAR index more than 0.2 whereas 13% (3123) of Salmonella isolates and 33% (6/18) of E. coli isolates had MAR index less than 0.2

    Investigation of the Surface Resistance of Niobium Between 325 MHz and 1300 MHz Using a Coaxial Half-wave Cavity

    Get PDF
    The Center for Accelerator Science at Old Dominion University has built a half-wave coaxial cavity (*) to measure the surface resistance of niobium as a function of frequency, temperature, rf field, preparation techniques, over a wide range of frequencies of interest for particle accelerators. The characteristics of the half-wave coaxial cavity provide these information on a same surface. The preliminary results showed clearly the frequency dependence of residual surface resistance (**). After establishing baseline, we have conducted a study of low temperature baking effect on the surface resistance under controlled environment. This paper will describe the details of the test procedure, results and we will explore underlying physics of the phenomenon. * H. Park et al., MOPB003, Proc. SRF2015, http://jacow.org/** H. Park et al., THPB080, Proc. SRF2017, http://jacow.org

    Cryogenic Test Results of the SPS Prototype RF-Dipole Crabbing Cavity With Higher Order Mode Couplers

    Get PDF
    The rf-dipole crabbing cavity planned for the LHC High Luminosity Upgrade is designed to deliver a transverse kick of 3.34 MV; crabbing the proton beam in the horizontal plane. The proton beams of the LHC machine operating at 7 TeV each sets high impedance thresholds on the crabbing cavity systems. The rf-dipole crabbing cavity is designed with a two higher order mode couplers to suppress those HOMs. The first prototype of the HOM couplers are fabricated at Jefferson Lab. This paper reports the cryogenic test results of the HOM couplers with the SPS prototype rf-dipole cavity

    Ni-based bimetallic heterogeneous catalysts for energy and environmental applications

    Get PDF
    Bimetallic catalysts have attracted extensive attention for a wide range of applications in energy production and environmental remediation due to their tunable chemical/physical properties. These properties are mainly governed by a number of parameters such as compositions of the bimetallic systems, their preparation method, and their morphostructure. In this regard, numerous efforts have been made to develop “designer” bimetallic catalysts with specific nanostructures and surface properties as a result of recent advances in the area of materials chemistry. The present review highlights a detailed overview of the development of nickel-based bimetallic catalysts for energy and environmental applications. Starting from a materials science perspective in order to obtain controlled morphologies and surface properties, with a focus on the fundamental understanding of these bimetallic systems to make a correlation with their catalytic behaviors, a detailed account is provided on the utilization of these systems in the catalytic reactions related to energy production and environmental remediation. We include the entire library of nickel-based bimetallic catalysts for both chemical and electrochemical processes such as catalytic reforming, dehydrogenation, hydrogenation, electrocatalysis and many other reactions

    Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions

    Get PDF
    BackgroundTargeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing.ResultsAll panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden.ConclusionThis comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.Peer reviewe

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study

    Get PDF
    Introduction. Switchingfrom polluting (e.g. wood, crop waste, coal)to clean (e.g. gas, electricity) cooking fuels can reduce household air pollution exposures and climate-forcing emissions.While studies have evaluated specific interventions and assessed fuel-switching in repeated cross-sectional surveys, the role of different multilevel factors in household fuel switching, outside of interventions and across diverse community settings, is not well understood. Methods.We examined longitudinal survey data from 24 172 households in 177 rural communities across nine countries within the Prospective Urban and Rural Epidemiology study.We assessed household-level primary cooking fuel switching during a median of 10 years offollow up (∼2005–2015).We used hierarchical logistic regression models to examine the relative importance of household, community, sub-national and national-level factors contributing to primary fuel switching. Results. One-half of study households(12 369)reported changing their primary cookingfuels between baseline andfollow up surveys. Of these, 61% (7582) switchedfrom polluting (wood, dung, agricultural waste, charcoal, coal, kerosene)to clean (gas, electricity)fuels, 26% (3109)switched between different polluting fuels, 10% (1164)switched from clean to polluting fuels and 3% (522)switched between different clean fuels
    corecore