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Abstract

Background: Targeted sequencing using oncopanels requires comprehensive
assessments of accuracy and detection sensitivity to ensure analytical validity. By
employing reference materials characterized by the U.S. Food and Drug
Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we
perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess
best practices for oncopanel sequencing.

Results: All panels demonstrate high sensitivity across targeted high-confidence
coding regions and variant types for the variants previously verified to have variant
allele frequency (VAF) in the 5–20% range. Sensitivity is reduced by utilizing VAF
thresholds due to inherent variability in VAF measurements. Enforcing a VAF
threshold for reporting has a positive impact on reducing false positive calls.
Importantly, the false positive rate is found to be significantly higher outside the
high-confidence coding regions, resulting in lower reproducibility. Thus, region
restriction and VAF thresholds lead to low relative technical variability in estimating
promising biomarkers and tumor mutational burden.

Conclusion: This comprehensive study provides actionable guidelines for oncopanel
sequencing and clear evidence that supports a simplified approach to assess the
analytical performance of oncopanels. It will facilitate the rapid implementation,
validation, and quality control of oncopanels in clinical use.

Keywords: Oncopanel sequencing, Target enrichment, Molecular diagnostics,
Reproducibility, Analytical performance, Precision medicine

Background
Despite ongoing advances in sequencing technologies to date, the promise of their use

for precision medicine has not yet borne out entirely for the majority of cancer pa-

tients. Although cancer is a genomic disease, most malignant tumors are currently clas-

sified and often treated based on the tissue of origin and the TNM (tumor, node, and

metastases) staging system for solid tumors rather than presence or absence of relevant

mutations in key oncogenic pathways. Presently, only a small number of specific muta-

tions in genes such as EGFR, ALK [1], and BRAF [2] are routinely tested to inform clin-

ical decisions. To move precision medicine from theoretical discussions to the bedside

of individual patients, it requires accurate and reproducible testing of a broad spectrum

of clinically relevant mutations combined with appropriate therapies. Hence, improved

mutation testing is greatly needed to confidently classify individual tumors, reliably pro-

vide personalized therapeutic choices, and inform patient prognosis.

Next-generation sequencing (NGS) of targeted genomic regions has become increas-

ingly common because targeted panels focus sequencing coverage on genomic regions

more likely to harbor important genomic aberrations and thereby increase diagnostic

sensitivity [3]. Oncopanels have several potential clinical applications, including identi-

fication of driver and potential driver mutations. Variants can be prioritized for their

biological significance and cross-referenced with potentially useful targeted therapies.

Some oncopanels are also used to assess micro-satellite instability [4], homologous re-

combination defect status [5], copy number alterations [6], and gene rearrangements

[7]. There is increasing evidence that a significant proportion of patients with low-

frequency alleles of these clinically actionable mutations show clinical response to tar-

geted therapies [8]. Because key therapeutic decisions are based on these results,
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including choice of molecular-targeted therapy and prediction of outcomes, it is critical

that mutation detection displays high sensitivity and low false positive (FP) rate and

that reports to physicians are highly accurate [9–11]. Importantly, both oncopanels and

downstream bioinformatic methods must be validated to be accurate, informative, and

reliable.

Certain tumors that are genetically unstable may result in a large number of cellular

proteins having somatic mutations (also known as neoantigens). More exposure of

neoantigens increases the likelihood of non-self recognition by the adaptive immune

system. If such a recognition event has occurred, but the tumor still progresses, a pos-

sible reason is the autoregulatory process of immune checkpoints which ordinarily pre-

vent autoimmunity by deactivating active T cells in the tumor microenvironment.

Therefore, if oncopanels are large enough in size, they can be used to estimate tumor

mutational burden (TMB), an emerging indicator for immune checkpoint inhibitors in

certain tumor types [12, 13].

In current practice, there are multiple Clinical Laboratory Improvement Amend-

ments (CLIA)-certified labs that have implemented oncopanels for tumor profiling. At

present, four pan-cancer panels have been approved or cleared by U.S. Food and Drug

Administration (FDA): FoundationOne CDx [14], MSK- IMPACT [10], NantHealth

Omics Core [15], and PGDx elio tissue complete [16]. In 2017, the FDA approved

Merck’s Keytruda (pembrolizumab) for any unresectable or metastatic solid tumor with

evidence of mismatch repair deficiency. Thus, this was the first approval that was

biomarker-based and tissue agnostic [17]. The FDA accelerated the approval of Bayer’s

Vitrakvi in 2018, and Roche’s Rozlytrek (entrectinib) in 2019, both of which are

biomarker-based cancer treatments [18]. However, only a minority of cancer patients

undergo high-throughput mutational profiling [19] and many physicians remain

skeptical of the rigorousness of genomic testing [20], hesitant to deplete precious tumor

material, and/or apprehensive about performing an additional tumor biopsy [21]. For

oncopanel sequencing to become a useful and widely adopted clinical test, a thorough

understanding of its sensitivity, reproducibility, and accuracy is greatly needed. To date,

no study has assessed how distinct oncopanel methodologies perform with respect to

variant allele frequency (VAF) and variant location, impacting sensitivity, FP rate, re-

producibility, and potential biomarkers such as TMB for oncopanels. Previous studies

comparing oncopanels have not used reference materials as test samples with (1)

enough VAF range and sufficient diversity of mutations to thoroughly interrogate a suf-

ficient number of clinically relevant mutations [22] and (2) sufficient material readily

available for the scientific community [23–25]. In contrast, this study used recently

characterized reference samples that contain an extensive collection of known positive

and negative variants [26] to provide a much more definitive and comprehensive un-

derstanding of key variables that impact performance of oncopanels.

The FDA-led SEquencing and Quality Control project phase 2 (SEQC2) continues

earlier consortium efforts [27–30] to advance best practices and address the technical

gaps in genomics technologies. Its Somatic Mutation Working Group has extensively

identified variant content of an individual pair of reference samples (breast cancer cell

line HCC1395 and its normal counterpart) and established best practices for genome-

wide somatic mutation calling [31, 32]. In parallel, the Oncopanel Sequencing Working

Group’s efforts, which are detailed herein, utilize a recently identified novel set of
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comprehensive variants and negatives [26] from additional reference samples to com-

pare variant calling across eight distinct oncopanels. We assessed intra-lab and cross-

lab reproducibility, sensitivity for known positives, and accuracy (i.e., FP rate) through

known negatives across a range of VAFs and in selected important genomic regions.

The relationships between analytical variables and TMB estimation were also estab-

lished to inform the selection of oncopanel and harmonization of TMB measurements

across test platforms, which are important needs [33] identified recently to advance the

successful utilization of TMB in clinical practice. This study provided a comprehensive

evaluation of eight oncopanels to inform best practice guidelines for oncopanel sequen-

cing (Table 1).

Results
Overview of study design

We employed four reference samples (Fig. 1a)—sample A (an equal mass pooled gen-

omic DNA (gDNA) sample of ten cancer cell lines from the Agilent Universal Human

Reference RNA (UHRR) material) [34], sample B (derived from a non-cancer male cell

line), sample C (equal dilution of sample A and sample B), and a spike-in sample (sam-

ple B with 5% AcroMetrix hotspot synthetic controls [35]). The majority (about two

Table 1 Summary of recommendations

Issue Recommendation

Reference material selection A reference material (or a set of reference materials) with a high density of
known variants spanning a range of low allele frequencies (e.g., from above
1 to 20%) is needed to assess the analytical performance of oncopanels
(Fig. 1a). Ideally, the reference material will encompass a diversity of simple
and complex variants in different cancer-associated genes.

Sensitivity Sensitivity was found to be high (> 96.5%) for variants previously verified to
have variant allele frequency (VAF) greater than 5% (Fig. 2a). We recommend
that a less stringent VAF threshold is used to achieve high sensitivity for
variants of VAF below 5%.

Spike-in Utilizing a sample spiked-in at a specified amount (e.g., 5%) can provide add-
itional variants at known allele frequencies for analytical validation of
oncopanels.

Variant type The sensitivity for detecting insertion and deletion variants (indels) is
typically more variable and poorer than single nucleotide variants (SNVs),
and this difference becomes more pronounced at low VAFs (Fig. 3). We
recommend that analytical validation of indels is performed independently
to SNVs.

Determining VAF threshold Reference materials can be used to establish an optimal VAF threshold that
reduces false positives (FPs) and retains sensitivity. Indels and SNVs may
require different VAF thresholds to optimize performance (Fig. 3b).

Controlling the FP rate In applications where a minimal FP rate is required, raising the allele
frequency threshold was effective at reducing FPs. The additional restriction
of analysis to the consensus targeted regions (CTR) can further reduce FP
rate.

Genomic location Genomic location can impact the rate of FPs detected, and we recommend
that analytical validation of panels is independently performed inside and
outside of the CTR (Fig. 4a).

Cross-lab reproducibility Measuring the analytical performance of a panel in multiple labs is critical to
establish reproducibility (Fig. 4c).

Estimating tumor mutational
burden (TMB)

TMB estimation should be confined to the CTR of each panel. Applying a
minimal VAF threshold was helpful to reduce FPs and improve TMB
evaluation (Fig. 5d).
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thirds) of more than 42,000 known small variants (including SNVs, small indels, and

multi-nucleotide variants (MNVs)) in the 22-Mb exon coding regions of sample A have

a VAF below 20%, making sample A uniquely suitable for assessing the analytical per-

formance of oncopanels. Sample C was included to increase the number of known vari-

ants with VAF between 1 and 2.5%. More details about the four reference samples are

included in “Methods.” A total of eight oncopanels from eight distinct well-established

panel providers were tested herein on these four samples, including Agilent Custom

Comprehensive Cancer Panel v2 (AGL), Burning Rock DX OncoScreen Plus (BRP), In-

tegrated DNA Technologies xGen Pan-Cancer Panel (IDT), iGeneTech AIOnco-seq

(IGT), Illumina TruSight Tumor 170 (ILM), QIAGEN Comprehensive cancer panel

(QGN), Roche SeqCap EZ Choice custom PHC Panel (ROC), and Thermo Fisher

Oncomine Comprehensive Assay v3 (TFS). Vendors shipped the same reagent kits to

all sites. Information about the oncopanels is included in Fig. 1b and Additional file 1:

Table S1.

Each panel was tested in at least three independent laboratories with quadruplicates

for each sample. In total, this unprecedented large-scale study encompassed 28 labora-

tories and 430 libraries (Fig. 1c). Each panel provider recruited the test laboratories and

harmonized the experimental protocols to minimize cross-lab variations in the study.

Libraries were sequenced on the same sequencing platform for each panel and the

panel provider then performed panel-specific variant calling. For more information

about sequencing and downstream bioinformatic pipelines, please see Additional file 2:

Supplementary Methods. Variant calling results were submitted in variant call format

(VCF) files, along with their targeted regions and whitelist/blacklist, to an independent

group with sole knowledge of the known content of samples A, B, C, and the spike-in

for performance evaluation (Fig. 1d). Intra-lab and cross-lab reproducibility were

Fig. 1 Comprehensive study design for assessing analytical performance of multiple pan-cancer targeted
sequencing technologies. a Four samples were tested on 8 pan-cancer panels with at least 3 different test
laboratories for each panel. b Basic information of 8 pan-cancer panels is listed in the embedded table (see
Additional file 1: Table S1 for detailed information). *All participating panels are for research use only.
†QGN’s UMI-aware variant caller is able to call variants with VAF as low as 0.5%. c Each sample had 4 library
replicates at each test laboratory. After sequencing, panel-specific variant calling was performed by each
panel vendor. d Variant calling results were submitted for performance analysis including sensitivity, false
positive call rate, and reproducibility
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computed between library replicates as a measure of variant calling consistency. Sensi-

tivity and FP rate were then estimated by utilizing the large sets of known positive (KP)

and known negative (KN) loci from our companion work [26]. More than 42,000 KPs

and 10 million KNs in sample A were characterized in the 22-Mb high-confidence exon

coding regions through extensive sequencing of sample A and the individual cell line

DNA samples that made up sample A. KN loci had the mismatch error rate below

0.25%. The distribution of KPs by VAF is shown in Fig. 1a.

Sensitive detection of SNVs in the focused regions by all panels

We evaluated the performance of detecting SNVs in the consensus targeted regions

(CTR, see “Methods” for details) [26]. Given there is a general consensus that higher

VAF variants are “easier” to detect, we focused our analysis on metrics that character-

ized performance relative to VAF, especially in the lower [1–10%] VAF range (Fig. 2).

The number of KPs and observed sensitivity are listed side by side for each VAF range

across three reference samples (A, C, and spike-in) and all panels (Fig. 2a). Sample C

was not tested by TFS. Overall, sensitivity across all VAF ranges in all panels was high

with narrow confidence intervals (Additional file 1: Table S2). It ranged from 87.1 to

98.3% for the lowest VAF range (1–2.5%) tested by AGL, BRP, IGT, and QGN (Fig. 2a).

Sensitivity was greater than 96.8% for the 2.5–5% range and greater than 98.4% for the

5–20% range. The unusual sensitivity for ILM in sample C for the 10–20% range was

due to a single false negative in all library replicates. Other exceptions were ILM, ROC,

and TFS for the 2.5–5% range, as their variant calling pipelines had a VAF reporting

threshold very close to 2.5%. So their sensitivity was reduced due to a boundary VAF

threshold effect (see below for the effect of VAF cutoff on sensitivity). Accordingly,

Fig. 2 Reproducibility and sensitivity across VAF ranges for SNVs in the consensus targeted regions. a Table
listed the number of known variants in each VAF range (left number), sensitivity (right number) for all 8
panels across all samples tested. For the panels with a built-in VAF threshold, “N/A” is listed if the VAF low
bound is much lower than the panel provider’s chosen VAF threshold. The VAF threshold is 2.6% for ILM,
2.0% for IDT, 2.5% for ROC, and 2.5% for TFS, respectively. b Average false positive SNV calls per million
across various VAF cutoffs. Jittering was applied to avoid overlapping. c Cross-lab and intra-lab
reproducibility (in Phred scale) for variant calls with VAF between 2.5 and 20%
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these threshold-dependent panels and IDT were not assessed for the lowest VAF range

(since IDT’s pipeline utilizes a VAF reporting threshold of 2.0%). All false negatives in

sample A or C were manually checked and can be explained by a combination of low

VAF and the panel’s VAF threshold except the above mentioned single case for ILM in

sample C. We initially anticipated similar sensitivity for the spike-in sample in the VAF

range of 2.5–10%, as the variants were designed to be 5% VAF. However, this was not

observed, likely due to interference of the nearby spike-in variants with amplicon

primers, DNA capture, or variant calling. To derive sensitivity estimates, custom filter-

ing of the spike-in’s variants was carried out by the panel providers to exclude variants

under primer interference for QGN and TFS or variants in dense clusters for IDT (see

Additional file 2: Supplementary Methods for details). Likewise, several dense variant

clusters led to unexpectedly low reported sensitivity for ROC (88.0%).

All panels had FP rates lower than 10.5 per Mb in the CTR with each panel’s default

VAF threshold, and the FP rates dropped as the VAF cutoff increased (Fig. 2b). The FP

rate was noticeably different between panels for a VAF cutoff at 1%, but became in-

creasingly similar as the VAF cutoff became more stringent. As a result, all panels had

similar FP rates of approximately 1 FP per Mb or less for VAF greater than 5%. And all

panels reported no FP calls for VAF greater than 10%. We also assessed both intra- and

cross-lab reproducibility for variant calls in the CTR with VAF between 2.5 and 20%

and observed that they were similar for each panel sample combination (Fig. 2c, Add-

itional file 3: Fig. S1A), with cross-lab reproducibility being slightly worse than intra-lab

reproducibility in a few instances. Results for sample A and sample C were similar for

VAF above 5% but showed some noticeable differences in the VAF range 2.5–5%. The

differences may be driven by VAF reporting boundary effects, as sample C has more

variants in the lower VAF ranges (thus, near the VAF reporting thresholds for several

panels) (Additional file 3: Fig. S1B).

Impact of variant type, VAF cutoff, and genomic region on sensitivity

We explored the impact of variant type on sensitivity for each panel by aggregating all

sample A and C libraries (Fig. 3a). Non-SNV variant calling (small indels and multi-

nucleotide variants (MNVs)) had more variable sensitivity than SNV variant calling for

AGL, ILM, and ROC panels, as the number of known non-SNV small variants per

panel in samples A and C is typically small by absolute numbers (green numbers in

Fig. 3a, Additional file 3: Fig. S2). Thus the confidence interval was usually wider for

non-SNV small variants (Additional file 1: Table S3). We characterized the impact of

VAF on sensitivity comparing SNVs against non-SNV variants (Additional file 3: Fig.

S2). For sample A, the difference between SNVs and non-SNV variants was most pro-

nounced in the lowest VAF range. For both SNVs and non-SNV variants, sensitivity

was generally observed to improve with known variants of higher expected VAFs.

We also applied a range of artificial VAF cutoffs in addition to each panel’s normal

reporting thresholds from stringent (2.5%) to less stringent (1.5%) to better understand

the impact of a VAF reporting threshold on sensitivity in detecting known positives in

the VAF range 2.5–5% (Fig. 3b, see Additional file 1: Table S4 for confidence intervals).

As the cutoff filter was more relaxed, and the boundary effects decreased, sensitivity

rose expectedly across most panels and all reference samples. This increased sensitivity
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was more prominent in samples A and C, which may be explained by the fixed and

higher VAF (5%) for variants in the spike-in sample. The boundary effects became neg-

ligible for the higher VAF ranges, i.e., 5–10% and 10–20%, in samples A and C (Add-

itional file 1: Table S5).

Sensitivity within the CTR and outside of the CTR, but inside the High Confidence

Coding Region (HC_CR, see “Methods” for details), was compared (Fig. 3c). For sam-

ples A and C, most panels performed consistently within and outside of the CTR (but

within HC_CR). TFS, ILM (for sample C), and ROC had higher observed sensitivity

outside of the CTR, but also had relatively few KPs in this region (Fig. 3c top bar

graph). Thus narrower confidence intervals for sensitivity were achieved within the

CTR (Additional file 1: Table S6).

False positive rates were significantly higher beyond the focused regions

We employed three different methods to estimate the FP rate. Method 1 relies on the

KNs (“via_KN”) in samples A and C (Additional file 3: Fig. S3A). Our list of KNs is ex-

tensive (> 10M) but only available within the CTR (which is the majority of the coding

region) and comprises about 30% of all coding regions. Using Method 1, a FP is a vari-

ant call on a KN position. A stringent consensus across multiple sequencing experi-

ments was employed to determine the partial list of negatives within the CTR [26].

Method 1 may tend to underestimate the overall FP rate across all positions of the

CTR. Method 2 marked any call in the normal sample B with VAF between 1 and 10%

as a false positive (“B_low,” Additional file 3: Fig. S3B) due to strong evidence of this

sample having normal diploid cell characteristics [26]. Method 3 leveraged sample mix-

ture to differentiate FPs. Any variant call in sample C was deemed an FP if it was not

called in any of four sample B libraries with VAF above 10% or any of four sample A li-

braries at the same test laboratory (“C_only,” Additional file 3: Fig. S3C). Method 2

Fig. 3 Impact of VAF cutoff, variant type, and genomic region on sensitivity (in Phred scale). a Violin
distribution plots of estimated sensitivity for each panel in all sample A and C libraries for known SNVs (in
blue on the left side) and other variants (small indels or MNVs, in green on the adjacent right side) with
VAF between 2.5 and 20%. Total numbers of small indels and MNVs are listed under the corresponding
violin plot. b Artificial VAF filters reduce sensitivity for known positives with VAF between 2.5 and 5% due to
the variable VAF measurements. c High concordance of sensitivity in and outside of CTR (more specifically,
in HC_CR beyond CTR) for known positives with VAF between 2.5 and 20%. Jittering was applied to one
dot at the top right corner to avoid overlapping
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might overestimate the FP rate by failing to exclude rare mosaic variants caused by cell

line drift. Method 3 could underestimate the FP rate by failing to recognize those FP

calls due to systematic errors as they would be called in all three samples. These three

methods were compared and found to produce largely similar estimates within the

CTR (Additional file 3: Fig. S3D), with the “B_low” method in one specific VAF range

of IGT and ILM being the only exception. As expected, almost all FP calls within the

CTR were irreproducible across library replicates for any panel, sample, and FP method

(Additional file 3: Fig. S4). Those few exceptions were then confirmed through manual

curation as systematic errors (see the legend for Additional file 3: Fig. S4).

Using the last two methods (“B_low” and “C_only”), we compared the FP rate within

and outside of the CTR (Fig. 4a). By either method, across VAF ranges and across

panels, we observed that the FP rate was lower in the CTR than outside. Breaking each

panel into three sub-regions (inside the CTR, outside the CTR but in HC_CR, or the

rest with the subregion sizes listed in Additional file 3: Fig. S3E), the FP rate was

the lowest in the CTR and the highest outside of the HC_CR when using either the B_

low or C_only method (Additional file 3: Fig. S3F-G). FP rates inside the CTR across

different VAF cutoffs are listed in Fig. 4b. For all panels, the FP rate decreased as the

VAF increased.

Finally, to better understand the impact of genomic regions on cross-lab reproduci-

bility, we assessed cross-lab reproducibility within and outside of the CTR with VAF

between 2.5 and 20% (Fig. 4c). Across most panels and in both samples A and C, cross-

lab reproducibility was marginally lower outside of the CTR. Taken together, these re-

sults suggest that variant location may drive high cross-lab reproducibility seen in

Fig. 4 Impact of CTR region on FP rate and reproducibility. a FP rate in and outside of the CTR using two
different methods (B_low and C_only) at three different VAF cutoffs, 1%, 2.5%, and 5%. C_only was not
applied to TFS as sample C was not tested on TFS. FP rates are plotted in squared root scale. b Estimated
FP rate within the CTR averaged over three methods at different VAF cutoffs. c Cross-lab reproducibility (in
Phred scale) in samples A and C within and outside of the CTR
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Fig. 2c. Since sensitivity did not drop noticeably outside the CTR (Fig. 3c), the observed

drops in reproducibility (Fig. 4c) may be driven by more FPs outside of the CTR

(Fig. 4a).

Enabling oncopanels of sufficient size to estimate TMB

Commonly measured by whole-exome sequencing (WES), TMB ranges over several or-

ders of magnitude and varies by tumor type. Suitable TMB biomarker thresholds can

also vary by tumor type, implying different degrees of accuracy may be required

for different indications. The elevated FP rate outside of the CTR will have a

strong detrimental effect on the accuracy of variant calls and subsequently TMB

estimates. This leads to a reasonable requirement that TMB estimation should be

confined to the CTR portion of each panel. The high density of variants in these

reference samples was purposely designed to enable an accurate evaluation of sen-

sitivity and limit of detection. To investigate a more “real-world” scenario where

using an oncopanel to estimate exome-level TMB might be relevant, we randomly

selected known variants comprised of a prevalence more consistent with actual tu-

mors for a variety of indications (e.g., between 5 and 50 per Mb). We then com-

puted the average technical run-to-run variance of panel-focused TMB estimates

and plotted the technical coefficient of variation (CV) at two different VAF cutoffs:

Fig. 5 Coefficient of variation (CV) of TMB. a Technical run-to-run variance of TMB with VAF cutoff above
2.5% was estimated for six panels at different TMB levels. A power-law curve (dashed line) is fitted for each
panel. b Technical run-to-run variance of TMB with VAF cutoff above 5%. c The intrinsic CV is plotted with
the equation (embedded, see “Methods” for detail) for each panel based on their panel size. The curve
(dashed) for size of 1 Mb is also plotted as a reference. d The overall CV is plotted combining technical and
intrinsic CV. The solid fitting power-law curve is for TMB (VAF > 2.5%), and the dashed curve is for
TMB (VAF > 5%)
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2.5% (Fig. 5a) and 5% (Fig. 5b, see “Methods” for details). All six panels with tar-

geted regions in the CTR greater than 250 kb were included in the analysis.

Clearly, the technical CV decreased at higher panel TMB values. There was no ob-

served effect related to the panel size. All panels achieved a CV lower than 25%

when panel-focused TMB was 25 or higher.

To assess the magnitude of additional variance introduced by the genomic coverage

of oncopanels, we utilized The Cancer Genome Atlas (TCGA) WES mutation data [36]

to compute TMB estimates using each panel’s CTR portion. We then used the mean

squared deviation (MSD) to measure the TMB estimation difference between whole-

exome and the panel-specific CTR portion. MSD has two components: mean bias and

variance. We characterized an intrinsic CV measure specific to each panel, related to

this variance component. Further linear regression analysis led to an approximate

equation estimating the intrinsic CV by TMB and the panel size (Additional file 3: Fig.

S5, see “Methods” for details). The intrinsic CV is plotted in Fig. 5c. In agreement with

technical CV, intrinsic CV decreases at higher TMB values. For example, a 1-Mb onco-

panel is estimated to have an intrinsic CV of 25% at a TMB value of 21. By incorporat-

ing both technical variance and intrinsic variance, an overall CV for TMB was

computed and plotted in Fig. 5d when using VAF cutoffs of 2.5% and 5% for each

panel. Overall CV was close to intrinsic CV for each panel at corresponding TMB

values. This indicates that all panels were able to achieve a lower technical variance

than the intrinsic variance associated with estimating exome-level TMB from a smaller

focused panel. Nevertheless, lower technical run-to-run variance is possible for all

panels using a higher VAF cutoff as illustrated in Fig. 5d. This improvement was more

apparent for AGL and QGN panels at lower TMB, and consistently large for IDT

across a wide TMB range. Although many of the panels, e.g., QGN, were not designed

for TMB estimation, they may be used to do so under certain circumstances. However,

if the goal is to maintain an overall CV lower than 25% in the clinically important TMB

range between 15 and 30, AGL combined with an VAF cutoff at 5% would be the only

panel from these eight suitable for TMB estimation.

Discussion
This oncopanel study was comprehensive in several areas: (1) the use of rigorous per-

formance metrics both within and outside of easier/difficult genomic regions, (2)

utilization of various oncopanel vendors with different panel sizes, (3) broad multi-

laboratory participation, (4) analysis of a wide dynamic range of VAFs, and (5) use of

test samples comprising advanced reference material with dense, known variant content

from a stable source. We assessed reproducibility, sensitivity, and the FP rate of eight

pan-cancer oncopanels across laboratories. We examined the impact on these metrics

by VAF ranges, variant types, and genomic regions. These panels ranged in size from as

small as 149 up to 7625 kb, and DNA input ranged from 20 to 100 ng. Enrichment of

targets by both hybridization-based capture and PCR amplification were represented.

The panel vendors represented major providers of currently marketed targeted sequen-

cing technologies.

We cannot be completely certain that all of our results would generalize to a new ad-

mixture reference sample similarly constructed or real-world clinical formalin-fixed

paraffin-embedded (FFPE) samples. Our primary reference sample (sample A) does not
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reflect all cancer indications, nor does it reflect all subtypes for any given cancer [26].

However, this approach provided noticeably better estimates than previous efforts [24].

For example, the large number of variants present in diverse sequence contexts in sam-

ples A and C enabled an accurate assessment of sensitivity and reproducibility for de-

tecting SNVs. We observed that these panels detected known small indel or MNV

positives with similar sensitivity and reproducibility as SNVs (Fig. 3a, Additional file 3:

Fig. S2). However, with the limited amount of small indel/MNV positives identified as

a proportion of all identified variants in the reference sample (1.2%), it is likely given

prior research in the field that these small indel/MNV positives identified in the refer-

ence sample are in group that is easier to detect, in general. Therefore, we cannot sug-

gest that these panels find small indels/MNVs with the same proficiency as SNVs

throughout their target regions until we have identified a larger and more representa-

tive set of indels/MNVs from which to compare. While SNVs predominate clinically

relevant oncology mutations, non-SNVs can also be key drivers [37], and panels should

be further characterized for analysis of non-SNVs as these variants are typically more

challenging to detect than SNVs. Additional reference material with more complex var-

iants is required to address this outstanding question.

We chose to use the output of vendor-implemented bioinformatics pipelines for their

respective proprietary panels. Other SEQC2 work has clearly demonstrated that choices

of bioinformatics pipelines will influence the variant calling results in WES and whole-

genome sequencing (WGS) [31]. Our raw data are made public to enable further evalu-

ation of various bioinformatics pipelines by the community. This study did not

characterize the effect of read coverage, which can be critical for low VAF variants.

Low read coverage can reduce sensitivity and sometimes inflate the FP rate [38]. In

addition, this study did not explore the impact of sample quality on variant calling. In

the clinical setting, it can take considerable time before samples are processed, and

samples are often subject to formalin fixation. A separate team from the Oncopanel Se-

quencing Working Group revealed the impact of formalin fixiation time and within

block position on the performance of oncopanel sequencing [39]. Taken together, the

experience gained from this study suggests that future analysis should focus on asses-

sing the impact of bioinformatics pipelines, including variant callers, on sensitivity and

FP rates.

The FP rate impacts TMB and overall confidence in the panel. To the best of our

knowledge, this is the first study with a comprehensive analysis of the FP rate for onco-

panels. Importantly, our results revealed that increasing the VAF reporting threshold

reduced the FP rate across all VAF values within the CTR, but this effect was far less

dramatic outside of the CTR. Therefore, one straightforward way to control the FP rate,

at least within the CTR, is to adjust the VAF reporting threshold, which for different

panel implementation modalities, may be optimally and more simply determined by

assaying our reference samples and additional negative (normal) reference material

using multiple technical replicates and cross-lab testing. On the contrary, if the goal is

to have sensitive detection of clinically actionable mutations, where the FP rate over a

region is not so relevant, lower variant-specific VAF threshold can be used without

compromising accuracy through a novel synthetic spike-in control that directly mea-

sures the variant-specific and experiment-specific background errors. The control is

presented in an accompanying SEQC2 manuscript [40].
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To understand the impact of genomic region on sensitivity, reproducibility, and FP

rates, we assessed all variants compared to those only within the CTR. Sensitivity was

consistent for each panel between the CTR and HC_CR (Fig. 3c). However, because

known variants were only available within HC_CR, we were not able to assess sensitiv-

ity for the regions outside of HC_CR. We hypothesize that sensitivity would be the

same outside of HC_CR or slightly lowered. As for the FP rate, we observed multiple

fold increases for all panels outside of the CTR when studying the impact of genomic

region (Fig. 4a). Reproducibility was lower outside of the CTR (Fig. 4c). A plausible in-

ference would be that the much higher FP rate outside of the CTR led to lower repro-

ducibility in that region. “Real-world” clinical samples likely harbor much fewer low

VAF variants (i.e., VAF < 20%) than sample A or C that was used here. With fewer vari-

ants, the effect of FP rate on reproducibility will be even more pronounced, i.e., the

change in reproducibility will be greater between the CTR and outside of the CTR. In the

extreme case of samples without any low VAF variants, e.g., a pure sample from a healthy

infant, reproducibility will be completely dependent on the FP calls with no relationship

to sensitivity. When reproducibility would play an important role in the specific applica-

tion of oncopanel sequencing, for example, profiling multiple samples to study intratumor

genetic heterogeneity, one may consider restricting the analysis to the CTR. Although

most pathogenic mutations are within the CTR [26], restricting the analysis of clinical

samples to the CTR may lead to the exclusion of certain mutations of interest. Currently,

the CTR has excluded difficult regions and places likely to cause systematic sequencing

errors. Extending the CTR will be a good direction for future work.

We noted that cross-lab reproducibility is similar to, but generally lower than intra-

lab reproducibility (Additional file 3: Fig. S1A). The VAF range has a greater impact

than the lab on reproducibility; however, given the increased variability across labs, we

encourage cross-lab testing of oncopanels. If this is not possible, an alternative is more

extensive testing within the same lab with different operators over an extended period.

Furthermore, routine proficiency testing will help safeguard the performance, even

within the same lab.

When screening clinically actionable mutations, FP variants are typically filtered by

various processes, including variant prioritization (where only selected variants are con-

sidered for determining targeted therapy), and therefore have a small impact in final

clinical decisions [10, 25]. In contrast, FP calls could easily confound TMB calculations

and create a noninformative biomarker. Based on the findings of this large-scale cross-

panel study, we propose different filtering and threshold-related methods for different

modalities: variants for prioritization and targeted therapy selection may employ lower

VAF reporting thresholds to achieve maximal sensitivity, while variants used in TMB

calculations for immunotherapy purposes should consider higher VAF reporting

thresholds or use VAF cutoffs commensurate with a low FP rate. Within this study, we

have evaluated the impact of analytical variables on the detection of mutations and

TMB estimation without reference to specific cancer subtypes. While the described re-

lationships between analytical variables and TMB estimation are likely to remain con-

stant regardless of cancer subtypes, the cancer type may inform the selection of

oncopanel and VAF threshold to optimize diagnostic yields. For example, a greater mu-

tation density, which is typical in lung cancers and melanomas, will enable a more

confident estimation of TMB with lower overall CVs (as shown in Fig. 5d for high
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TMB values). Therefore, a moderately sized oncopanel with a higher VAF threshold

may be sufficient. Alternatively, lower VAFs, which confound confident diagnosis, are

typical in cancers with lower sample purity or greater intratumor heterogeneity, such as

pancreatic cancers. In these cancers, a larger oncopanel with a lower VAF threshold

may be required to confidently estimate TMB.

In summary, all eight panels achieved high sensitivity (ranging from 84.2 to 100%) for

variants of low VAF between 1 and 5% (Fig. 2a). Applying an increasingly strict VAF

cutoff reduces the FP rate, but also reduces sensitivity (Fig. 3b). VAF reporting thresh-

olds create boundary effects due to stochastic sampling, where a variant may have an

observed VAF just above the threshold in one replicate and but below in another, caus-

ing a decrease in sensitivity and reproducibility. When comparing performance metrics

in different genomic regions, sensitivity remains consistent; however, the FP rate is

higher and consequentially reproducibility is lower outside of the CTR. These oncopa-

nels demonstrated low relative technical variability in estimating TMB; however, due to

the greater variability in sampling a much smaller region of the exome (Fig. 5), our re-

sults suggest that, at a minimum, oncopanels will require 1Mb in the CTR region to

properly estimate TMB at levels commonly used for decision thresholds and may re-

quire even larger panels if TMB thresholds are needed below 10–15 mutations per

megabase. Results are generally consistent with previous in silico studies [41–43]. This

comprehensive study provides actionable guidelines for oncopanel sequencing and clear

evidence that supports a simplified approach to assess the analytical performance of

oncopanels. It will facilitate the rapid implementation, validation, and quality control of

oncopanels in clinical use.

Methods
Testing samples

Realizing that there is no adequate reference genomic material to enable a transparent

cross-lab study of oncopanels, the Oncopanel Sequencing Working Group developed

and validated a genomic sample suitable for benchmarking oncopanel’s performance in

detecting small variants of low allele frequency (AF). The design, validation process,

and the results are reported in a companion paper [26]. This sample, termed “sample

A,” is composed of an equal mass pooling of 10 gDNA samples prepared from Agilent’s

Universal Human Reference RNA (UHRR) [34] cancer cell lines. Over 42K small vari-

ants are called with high confidence in the defined CTR of over 22 million bases.

Briefly, CTR is the overlap of targeted regions of four whole-exome sequencing panels,

UCSC coding genes, Ensemble exons, and NIST high-confidence genomic regions,

followed by a removal of low complexity regions [26]. The majority of these small vari-

ants have a VAF below 20%, making sample A uniquely suitable for assessing the ana-

lytical performance of oncology panels. More specifically, about 7% of them are in

variant allele frequency (VAF) range (1%, 2.5%), 18% in (2.5%, 5%), 25% in (5%, 10%),

and 18% in (10%, 20%). Sample B is a gDNA sample from a normal male cell line (Agi-

lent Human Reference DNA, Male, Agilent part #: 5190-8848). Sample C is a 1:1 mix

of sample A and sample B. Sample C was included to increase the number of known

variants with VAF between 1 and 2.5%. The spike-in sample is sample B with 5% Acro-

Metrix29 Spike hotspot synthetic controls (Thermo Fisher Scientific, Fremont, CA).
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Samples A, B, and C were prepared by Agilent and provided without charge to SEQC2

for study. The spike-in sample was prepared at Thermo Fisher Scientific (Fremont, CA)

after receiving sample B from Agilent under their material transfer agreement. All four

samples were stored in low-EDTA TE buffer (10 mM Tris, 0.1 mM EDTA, pH 8.0) at

20 ng/μl concentration.

Participating panels, test sites, and study protocol

Study participation of oncopanel vendors was actively sought out through all available

venues. A study plan was discussed in detail with each interested contact, emphasizing

the cross-lab study design, transparency, and the requirement for eventual data release

to the public domain. Eight panel providers agreed to participate. Each panel provider

then recruited independent test sites (i.e., laboratories) that were proficient with its

panel and oncology sequencing procedure. Test samples were distributed to test sites

after executing Agilent material transfer agreement and SEQC2 confidentiality agree-

ment. A sample processing and sequence data reporting standard operating procedure

(SOP) was also distributed to all test sites. It includes test sample description, sample

receiving and preparation, a list of test sites, naming convention, testing procedure,

and instructions on library preparation quality data collection. There were at least

three independent test sites for each participating panel. Panel providers and their

supporting partners distributed panels and reagents to the corresponding test sites.

Each site followed the SOP and a panel-specific experimental protocol (see Add-

itional file 2: Supplementary Methods for details) to make 4 replicate libraries for

each sample. Sequencing was done on the same sequencing platform for each

panel. Each panel provider determined the depth of coverage per library and sam-

ple C libraries were sequenced twice as deep as other samples. Panel providers

were encouraged to conduct pilot sequencing experiments with test samples at

their internal lab or test sites. Pilot data was not required for submission to

SEQC2.

Reproducibility by VAF ranges per panel

Given the variability in VAF measurements and its influence on reproducibility, a non-

symmetric reproducibility measure was devised. For comparing library “Libx” to an-

other replicate “Liby” of the same sample, reproducibility is defined as the portion of

Libx’s variant calls that are also detected in Liby. It can be computed by dividing the

number of variants called in both Libx and Liby by the number of variant calls in Libx.

Similarly, a reproducibility value can be computed for comparing Liby to Libx. These

two reproducibility values are not symmetric and thus may be different. For comparing

Libx to Liby, VAF ranges are applied unsymmetrically to compute reproducibility

through stratifying variant calls of Libx into VAF ranges with no restriction imposed to

variant calls of Liby. When both library replicates are from a same test lab, it is counted

as one intra-lab reproducibility measurement. When they are from different test labs, it

is counted as one cross-lab reproducibility measurement. As there are multiple library

replicates from multiple labs, many reproducibility measurements can be computed for

each sample. The average intra-lab reproducibility indicates what percentage of variants

called by one library in one lab within a specific VAF range will be detected by another
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library replicate in the same lab without any restriction to their VAF values. The aver-

age cross-lab reproducibility may be interpreted similarly.

Sensitivity estimation by VAF ranges

Sensitivity is defined as the portion of known variants detected by each panel sequen-

cing experiment among all the KPs targeted by the panel. As the list of KPs was not all

inclusive, sensitivity was provided as an estimate. Fortunately, the number of known

variants was usually high enough to provide an accurate estimate. For each sensi-

tivity estimate, a 95% confidence interval was calculated by bootstrap resampling

with the assumption that library replicates are not independent. Sensitivity esti-

mates can be further stratified by the VAF of known variants. Four VAF ranges

were adopted in this study, 1–2.5%, 2.5–5%, 5–10%, and 10–20%. For the spike-in

sample, there was a single range around 5% as all AcroMetrix variants were

spiked-in at a VAF of 5%.

FP rate estimation approaches

Three approaches were adopted to estimate false positive (FP) rate. In the CTR, a list

of known negative (KN) positions was provided for sample A. This list covers over 50%

of the CTR, enough for an accurate estimation of FP rate. By removing the positions

overlapping with any known variants in sample B, a separate list of KN positions was

generated for sample C. Any variant calls overlapping with the negative positions are

flagged as FPs. FP rate is estimated as the ratio of FP calls out of every million KN posi-

tions. This is the first approach (coded as “viaKN”), applicable to sample A and sample

C, but limited to the CTR.

By the second approach (coded as “B_low”), any calls in the normal sample B with

VAF between 1 and 10% are marked as false positives (FPs). A pure diploid normal

sample has variants at either 50% (heterozygous) or 100% (homozygous). Stochastic

sampling and the influence of copy number variation lead to VAF deviation from those

two values. As no extremely high copy number variation was observed in sample B, it

is reasonable to assume that variant calls in sample B with VAF below 10% are FPs.

Variant calls with VAF greater than 10% in any of other three sample B libraries at the

same test sites will be excluded. The third approach (coded as “C_only”) leveraged sam-

ple mixture to differentiate FPs. Any variant in sample C must come from either sam-

ple A or sample B. If a variant is called in one sample C library, but not in any of four

sample B libraries with VAF above 10% or any of four sample A libraries at the same

test laboratory, it is an FP. This approach is more burdensome as all three samples and

multiple libraries must be considered, but it does not rely on the assumption of sample

B’s variant VAF range or the KNs in sample A. Furthermore, it cannot detect FPs due

to any panel bias. Unlike “viaKN,” both “B_low” and “C_only” can be applied to esti-

mate FP rate in the regions beyond the CTR.

Description of three sub-regions for each panel

The CTR was defined as the overlapping regions of four whole-exome sequencing

panels that were used in the companion work21 to characterize known variants in sam-

ple A, NIST high-confidence regions, and exome coding regions. The CTR was then
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refined by removing the low complexity regions. The CTR is completely within high-

confidence exome coding regions (HC_CR) that is defined as the overlapping regions

of NIST high-confidence regions and exome coding regions. By intersecting the CTR

and HC_CR with the targeting region of each panel, three sub-regions for each panel

can be defined for performance comparison: within the CTR, within the HC_CR but

outside of the CTR, and the rest.

Evaluation of technical run-to-run variability in panel TMB estimates via simulation

The simulation aimed to reduce the variant density and reduce low VAF variants to

better mimic a “real-world” clinical sample. While the high variant density and high

percentage of variants with VAF below 5% in the test samples provided an advantage in

estimating detection sensitivity with narrow confidence intervals, they presented obsta-

cles here for the evaluation of TMB technical variability. The high variant density

(equivalent to a TMB value about 1000) in the test samples will overshadow the effect

of the FP calls and thus greatly underestimate TMB technical variability. The high

percentage (over 75% in sample C) of variants with VAF below 5% may lead to an over-

estimate of TMB technical variability due to the variability in detecting these low VAF

variants. The simulation was applied to the CTR. The resultant median VAF for low-

frequency (< 20%) KPs would be between 5 and 10%. Sample C was chosen for the

simulation analysis as there are fewer uncharacterized true variants in sample C with

VAF greater than 2.5% in comparison to sample A. All the known variants in sample B

were excluded first from our KP list and from all the variant calling results (VCF files

of library replicates) of each panel. The KPs with VAF < 5% or VAF > 40% in sample A

were also removed. In theory, no KP with VAF < 2.5% or VAF > 20% in sample C was

left. To mimic multiple samples with the constant TMB at a similar level with a clinical

sample, we kept a fixed portion of KPs that resulted in the same number of KPs across

the CTR for panel testing in the simulated samples. Specifically, based on their VAF in

sample A, k% (k = 0, 1, 2, 5, 10, 20) of KPs were retained for VAF between 10 to 40%

and 0.5 × k% of KPs were kept for VAF between 5 and 10%. Given each value, (100 −

k)% of KPs were randomly excluded from CTR to generate a base-report-region for all

the pan-cancer panels. Therefore, the variants not excluded from a VCF file were

counted as the reported calls by the library of a pan-cancer panel in a simulation run.

It is worth pointing out that the reported variants include FP calls and possibly unchar-

acterized true variants in additional to the retained KPs. Finally, 5000 rounds of simula-

tion were performed for each based-report-region with a k value greater than 0.

For each one of 5000 base-report-region with a k value (k > 0), the reported variants

were then counted for these above a chosen VAF threshold for each library replicate.

The variance and mean across all technical replicates for each panel were calculated.

Then, we computed the overall average of variance and mean over the 5000 runs of

simulation. Finally, the CV for TMB were calculated as:

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ovarall Average of Variance

p

Ovarall Average of Mean Count

The mean TMB for each chosen k value was calculated as the overall average count

of variants divided by the report region sizes of six panels. This CV is adopted to
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measure the technical run-to-run variability and examine its dependence on TMB and

VAF cutoff.

Model the deviation in TMB rate from WES by pan-cancer panels via TCGA dataset

Mutation Annotation Format (MAF) files of 10,295 cancer genomes across 33 cancer

types were collected from The Cancer Genome Atlas (TCGA) project involving 2.9

million somatic mutations (MC3 Public MAF) for TMB measurement. The shared por-

tion of TCGA coding sequence (CDS) region and the CTR with a size of 22,089,460

bases (55% of TCGA CDS) was used to calculate the TMB rate of each individual can-

cer sample. The TCGA-measured TMB rate was calculated as the number of mutations

per million bases within the shared region and used as the baseline in this analysis.

Then, given the TCGA somatic mutations as ground truth, the panel-measured TMB

rate of each cancer sample was calculated by the number of mutations within the panel

divided by the panel’s region overlapping with the CTR and TCGA CDS in million base

pairs. Two panels, ROC and TFS, were excluded from this analysis because of their

small sizes.

For each pan-cancer panel, the mean squared deviation (MSD) was utilized to evalu-

ate the difference between TCGA and panel TMB rates of the same group of cancer

samples,

MSD P j
� � ¼

Pn
i¼1 TCGA:TMBi−P j i;TMBi;Cov j

� �� �2

N

where j represents each panel and i is an individual cancer sample. The function Pj cal-

culates the TMB of sample i within the covered region (Covj) by panel j. N represents

the number of samples in the group for the calculation of MSD. One outlier cancer

genome TCGA-13-0889-01A-01W-0420-08 (with TCGA TMB rate of 33) was excluded

from the calculation of MSD due to the abnormally huge difference between the TMB

rates measured by TCGA WES and panels.

For a group of samples with TMB rates close to each other and thus close to their

mean value, a modified MSD (MSD´) is defined by substituting the TMB mean for the

individual TCGA TMB in the equation above. Approximately, MSD equals to MSD´

subtracting the variance of TCGA TMB in the sample group. Mathematically, MSD´

equals to the sum of the variance of TMB by the panel and the squared difference in

the mean TMB values between TCGA and the panel. Thus, MSD is broken down into

two components of mean bias and variance (see Additional file 2: Supplementary

Methods for details). The mean bias component is equal to the squared difference in

the mean TMB values between TCGA and the panel. The variance component is equal

to the variance of TMB by the panel reduced by the variance of TCGA TMB. This ad-

justed variance component is of particularly interest.

To better understand this adjusted panel TMB variance, we selected the TCGA

samples (about 2400 samples) with TMB rates from 5 to 40 and sorted them by

TMB. We then grouped each 100 samples and calculated the panel TMB mean

value and the adjusted panel TMB variance. Multiplying it by the squared panel

size in million bases, we converted the adjusted panel TMB variance to the muta-

tion count level, which was then plotted against the product of the panel TMB

mean and the panel size. A linear regression model was fitted over these two
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variables from all the six panels that cover at least 250 kb in the CTR (Additional

file 3: Fig. S5). A very high R2 value (0.957) was observed along with a tight 95%

confidence interval (1.28–1.34) for the slope of the regression line. This revealed

a strong linear relationship between the adjust panel TMB variance and the panel

TMB mean in mutation count. Finally, an intrinsic CV for each panel could be

calculated as 1.15 divided by the square root of panel TMB mean in mutation

count.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02315-0.

Additional file 1: Table S1. Detailed information for eight participating pan-cancer panels. Table S2. 95% confi-
dence interval for reported sensitivity across VAF ranges for SNVs in the consensus targeted region (CTR). Table
S3. 95% confidence interval for reported sensitivity in detecting known SNVs and other variants of expected VAF
between 2.5% and 20%. Table S4. 95% confidence interval for reported sensitivity in detecting known SNVs within
the CTR of expected VAF between 2.5% and 5% after applying the artificial VAF cutoff at 1.5%, 2.0% and 2.5%.
Table S5. Sensitivity across VAF ranges for all samples after applying the artificial VAF cutoff. Table S6. 95% confi-
dence interval for reported sensitivity within the CTR or HC_CR (more specifically, in HC_CR beyond the CTR) in de-
tecting known positives of expected VAF between 2.5% and 20%.

Additional file 2. Supplementary Methods.

Additional file 3: Fig. S1. Concordance of average cross-lab reproducibility and intra-lab reproducibility in Phred
scale across VAF ranges for samples A and C. Fig. S2. Comparison of sensitivity of different variant types across
VAF ranges. Fig. S3. Estimation of the false positive rate by three methods. Fig. S4. Low reproducibility of false
positive calls across library replicates. Fig. S5. Scatter plot of panel TMB mean × panel_size (x-axis) and adjusted
panel TMB variance × panel_size2 (y-axis).

Additional file 4. Review history.

Acknowledgements
We thank our FDA colleagues Drs. Anand Pathak and Shashi Amur for providing useful feedback during study design
and manuscript preparation.

Review history
The review history is available as Additional file 4.

Peer review information
Anahita Bishop was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Disclaimers
This research includes contributions from, and was reviewed by, the FDA and the NIH. This work has been approved
for publication by these agencies, but does not necessarily reflect official agency policy. Certain commercial materials
and equipment are identified in order to adequately specify experimental procedures. In no case does such
identification imply recommendation or endorsement by the FDA or the NIH, nor does it imply that the items
identified are necessarily the best available for purpose.

Authors’ contributions
W.T., L.S., W.J., and J.X. conceived the project. B.G., D.J.J.Jr., J.C.W., W.T., L.S., W.J., and J.X. devised the experiments. N.N.
and L. L. prepared the reference samples for cross-laboratory experiments. N.N., C. P-P., Z.Z., K.L., W.C., J.S.L., E.L., T.A.R.,
V.K.M., C.X.,D.B., S.C., K.G., N.H., F.Q., K.W., C.A., S.H., M.J.,W.Q., A.S., Y.W., G.Z., and S.Z. coordinated laboratory experiments
and/or performed panel-specific variant calling analysis. G.C., H.A., A.B., J.B., B.B., D.J.B., A.C., C.R.C., D.C., J.C., J.C.C., D.J.C.,
E.C., A.d.P., D.D., A.K.E., J.F., A.G., S.G., C.H., X.H., B.H., J.H., K.H., J.H., J.K., B.K., P.L., Q.L., W.L., Y.L., S.L., C.M., N.M., R.M-A., Q.M.,
P.A.M., D.M., C.P.P., A.R., P.R., R.R., B.S., E.S., R.S., R.S., J.C.S-C., M.S., M.S.L., P.S., D.S., M.S., A.S., J.S., P.S., H.T., L.T., Y.T., V.J.T.,
D.T., E.V.G., S.V., K.W., V.W., J.Y., S.H.Y., M.Z., X.Z., and C.E.M. performed laboratory experiments. B.G., D.L., Y.Z., S.W., P.R.B.,
Y.Y., H.B., T.B., L.B.,C.C.,T.C., M.C., I.W.D., X.F., C.F., M.G., H.H., L.H., D.P.K., P.Ł., P.L.,Z.L., Z.L., D.B.M., T.M., B.N., B.L.P., M.P., Q.S.,
T.S., S. T, D.T-M., J.T-M., B.T., N.T., C.W., J.W., Z.W., L.W., C.X., W.X., S.X., M.Y., Y.Z., and T.M. contributed to data analysis. B.G.,
D.L., Y.Z., and S.W. prepared the figures. R.K., B.G., D.L., W.J., L.S., and J.X. prepared the manuscript, with support from all
co-authors. All authors read and approved the final manuscript.

Funding
All SEQC2 participants freely donated their time, reagents, and computing resources for the completion and analysis
of this project. Part of this work was carried out with the support of the Intramural Research Program of the National
Institutes of Health (to Mehdi Pirooznia), National Institute of Environmental Health Sciences (to Pierre Bushel), and
National Library of Medicine (to Danielle Thierry-Mieg, Jean Thierry-Mieg, and Chunlin Xiao). Leming Shi and Yuanting
Zheng were supported by the National Key R&D Project of China (2018YFE0201600), the National Natural Science
Foundation of China (31720103909), and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01).

Gong et al. Genome Biology          (2021) 22:109 Page 19 of 23

https://doi.org/10.1186/s13059-021-02315-0


Donald J. Johann, Jr. acknowledges the support by FDA BAA grant HHSF223201510172C. Timothy Mercer and Ira
Deveson were supported by the National Health and Medical Research Council (NHMRC) of Australia grants
APP1108254, APP1114016, and APP1173594 and Cancer Institute NSW Early Career Fellowship 2018/ECF013. This re-
search has also been, in part, financially supported by the MEYS of the CR under the project CEITEC 2020 (LQ1601), by
MH CR, grant No. (NV19-03-00091). Part of this work was carried out with the support of research infrastructure EATR
IS-CZ, ID number LM2015064, funded by MEYS CR. Boris Tichy and Nikola Tom were supported by research infrastruc-
ture EATRIS-CZ, ID number LM2018133 funded by MEYS CR and MEYS CR project CEITEC 2020 (LQ1601).
The contents of the published materials are solely the responsibility of the administering institution, a participating
institution or individual authors, and they do not reflect the views of any funding body listed above.

Availability of data and materials
Important data items from the consortium oncopanel sequencing effort that we intend to disclose include the
following: (1) NGS sequencing data [44] (in FASTQ or BAM format) from eight oncopanels for sample A, sample B,
sample C, and the spike-in sample; (2) variant call results [45] (in VCF format) by the panel providers for these four sam-
ples; and (3) dependent files [45] (e.g., panel BED files, genome FASTA files) for each oncopanel.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare the following potential competing financial interests:
Natalia Novoradovskaya, Katherine Wilkins, Anne Lucas, Scott Happe, and Carlos Pabon are all employees of Agilent
Technologies, Inc. Agilent sample B DNA reference sample is a current product and sample A DNA and sample C DNA
are potential products of Agilent Technologies, Inc.

Author details
1Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug
Administration, Jefferson, AR 72079, USA. 2Immuneering Corporation, One Broadway, 14th Floor, Cambridge, MA
02142, USA. 3Agilent Technologies, 11011 N Torrey Pines Rd, La Jolla, CA 92037, USA. 4Department of Information
Science, University of Arkansas at Little Rock, 2801 S. Univ. Ave, Little Rock, AR 72204, USA. 5State Key Laboratory of
Genetic Engineering, School of Life Sciences and Shanghai Cancer Hospital/Cancer Institute, Fudan University,
Shanghai 200438, China. 6Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA. 7Research and
Development, Burning Rock Biotech, Shanghai 201114, China. 8Bioinformatics, Integrated DNA Technologies, Inc., 1710
Commercial Park, Coralville, IA 52241, USA. 9iGeneTech, 8 Shengmingyuan Rd., Zhongguancun Life Science Park,
Changping District, Beijing 100080, China. 10Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA. 11Research and
Development, QIAGEN Sciences Inc., Frederick, MD 21703, USA. 12Market & Application Development Bioinformatics,
Roche Sequencing Solutions Inc., 4300 Hacienda Dr, Pleasanton, CA 94588, USA. 13Thermo Fisher Scientific, 110 Miller
Ave, Ann Arbor, MI 48104, USA. 14Clinical Diagnostic Division, Thermo Fisher Scientific, 46500 Kato Rd, Fremont, CA
94538, USA. 15Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St,
Little Rock, AR 72205, USA. 16Departments of Medicine, Pathology, and Cancer Biology, College of Medicine and Life
Sciences, University of Toledo Health Sciences Campus, 3000 Arlington Ave, Toledo, OH 43614, USA. 17National
Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA. 18Department of Immunology,
Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center, 5323 Harry Hine Blvd, Dallas,
TX 75390, USA. 19Research and Development, Roche Sequencing Solutions Inc., 500 South Rosa Rd, Madison, WI 53719,
USA. 20Clinical Sequencing Division, Thermo Fisher Scientific, 180 Oyster Point Blvd, South San Francisco, CA 94080,
USA. 21Marketing, Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA. 22Icahn Institute
and Dept. of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York,
NY 10029, USA. 23Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA. 24Department of
Pathology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China. 25Department of
Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China. 26Institute of Pathology, Fudan
University, Shanghai 200032, China. 27JMP Life Sciences, SAS Institute Inc., Cary, NC 27519, USA. 28Departments of
Pathology and Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA. 29R&D Genomics MPS,
Institute for Clinical and Experimental Pathology ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA.
30ResearchDx, Inc., 5 Mason, Irvine, CA 92618, USA. 31Department of Computer Science, Engineering and Physics,
University of Michigan-Flint, Flint, MI 48502, USA. 32Garvan Institute of Medical Research, Sydney, NSW, Australia. 33St
Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia. 34Department of Pathology,
College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA. 35Lucas County Coroner’s
Office, 2595 Arlington Ave., Toledo, OH 43614, USA. 36Division of Gastroenterology and Hepatology, Mayo Clinic,
Rochester, MN 55905, USA. 37OmniSeq, Inc. 700 Ellicott St, Buffalo, NY 14203, USA. 38Department of Physiology and
Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA. 39Stanford Genome Technology
Center, Stanford University, Palo Alto, CA 94304, USA. 40Division of Genetic and Molecular Toxicology, National Center
for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA. 41Fondazione Bruno Kessler,
38123 Trento, Italy. 42Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo,
OH 43614, USA. 43Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, CIBERER
Instituto de Salud Carlos III, 28046 Madrid, Spain. 44EATRIS ERIC- European Infrastructure for Translational Medicine, De
Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands. 45Kinghorn Centre for Clinical Genomics, Garvan Institute of

Gong et al. Genome Biology          (2021) 22:109 Page 20 of 23



Medical Research, Sydney, NSW, Australia. 46St Vincent’s Clinical School, Faculty of Medicine, University of New South
Wales, Sydney, NSW, Australia. 47Cancer Genetics Inc, 201 Route 17 N, Meadows Office Building, Rutherford, NJ 07070,
USA. 48Institute for Personalized Cancer Therapy, MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX
77030, USA. 49Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou
310058, Zhejiang, China. 50HK3 Lab, Milan, Italy. 51Molecular Laboratory, Prof. F. Raue, Im Weiher 12, Heidelberg,
Germany. 52Agilent Technologies, 1834 State Hwy 71 West, Cedar Creek, TX 78612, USA. 53Department of Pathology,
Strata Oncology, Inc., Ann Arbor, MI 48103, USA. 54Human Genome Sequencing Center, Baylor College of Medicine, 1
Baylor Plaza, Houston, TX 77030, USA. 55Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,
USA. 56NGS Products and Services, Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA.
57Molecular Genetics Laboratory, Molecular Diagnostics Division, London Health Sciences Centre, 800 Commissioners
Rd E, London, Ontario N6A5W9, Canada. 58Division of Anatomic Pathology, Mayo Clinic, 200 First Street SW, Rochester,
MN 55905, USA. 59Bioinformatics Research, Institute of Molecular Biotechnology, Boku University Vienna, Vienna,
Austria. 60Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland. 61Department of Biotechnology,
Boku University, Vienna, Austria. 62Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz,
IdiPaz, CIBERER Instituto de Salud Carlos III, 28046 Madrid, Spain. 63ITHACA, European Reference Network on Rare
Congenital Malformations and Rare Intellectual Disability, European Commission, Lille, France. 64Department of
Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of
Medical Sciences, No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China. 65Center of Genome and
Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, Liaoning, China.
66Geneis, 5 Guangshun North St., Chaoyang District, Beijing 100102, China. 67GeneSmile Ltd Co., Jiangsu Cancer
Hospital, 42 Baiziting St., Xuanwu District, Nanjing 210009, Jiangsu, China. 68Genycell Biotech España, Calle Garrido
Atienza, 18320 Santa Fe, Granada, Spain. 69CMINDS Research Center, Department of Electrical and Computer
Engineering, College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA. 70Department of
Genetics, University of North Carolina, 250 Bell Tower Drive, Chapel Hill, NC 27599, USA. 71Accugenomics, Inc., 1410
Commonwealth Drive, Suite 105, Wilmington, NC 20403, USA. 72Translational Research Laboratory, Belfer Center for
Applied Cancer Science, Dana-Farber Cancer Institute, 360 Longwood Ave, Boston, MA 02215, USA. 73Bioinformatics
and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health,
Bethesda, MD 20892, USA. 74Astrazeneca Pharmaceuticals, 35 Gatehouse Dr, Waltham, MA 02451, USA. 75Department
of Pathology and Laboratory Medicine, Western University, London, Ontario N6A3K7, Canada. 76Institute for Molecular
Medicine Finland (FIMM), Nordic EMBL Partnership for Molecular Medicine, HiLIFE Unit, Biomedicum Helsinki 2U
(D302b), P.O. Box 20, (Tukholmankatu 8), FI-00014 University of Helsinki, Helsinki, Finland. 77Laboratory for Molecular
Genetics, Endocrine Practice, Im Weiher 12, 69121 Heidelberg, Germany. 78Division of Systems Biology, National Center
for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA. 79Center for Bioinformatics and
Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University,
500 Dongchuan Rd, Shanghai 200241, China. 80National Centre for Cardiovascular Research (CNIC), Madrid, Spain.
81Primbio Genes Biotechnology, Building C6-501, Biolake, No.666 Gaoxin Ave., East Lake High-tech Development Zone,
Wuhan 430074, Hubei, China. 82National Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA. 83Center of Molecular Medicine, Central European
Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. 84Center for Genomics, School of
Medicine, Loma Linda University, Loma Linda, CA 92350, USA. 85Division of Microbiology & Molecular Genetics,
Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA. 86Center for
Individualized Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA. 87Department of Health Sciences, Mayo Clinic,
Scottsdale, AZ 85259, USA. 88Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic,
Scottsdale, AZ 85259, USA. 89College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China. 90Science for
Life Laboratory, Karolinska Institutet, Tomtebodavägen 23B, 171 65 Solna, Sweden. 91National Center for Biotechnology
Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20894, USA.
92Department of Biostatistics, Columbia Mailman School of Public Health, 722 West 168th St., New York, NY 10032,
USA. 93Center for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
94Clinical Laboratory, Burning Rock Biotech, Guangzhou 510300, Guangdong, China. 95Geneplus, PKUCare Industrial
Park, Changping District, Beijing 102206, China. 96Australian Institute of Bioengineering and Nanotechnology, University
of Queensland, Brisbane, QLD, Australia. 97Genomics and Epigenetics Theme, Garvan Institute of Medical Research,
Sydney, NSW, Australia. 98Human Phenome Institute, Fudan University, Shanghai 201203, China. 99Fudan-Gospel Joint
Research Center for Precision Medicine, Fudan University, Shanghai 200438, China. 100Q2 Solutions - EA Genomics,
5927 S Miami Blvd, Morrisville, NC 27560, USA.

Received: 28 July 2020 Accepted: 18 March 2021

References
1. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of

lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists,
International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;
8(7):823–59. https://doi.org/10.1097/JTO.0b013e318290868f.

2. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT,
Hersey P, Kefford R, Lawrence D, Puzanov I, Lewis KD, Amaravadi RK, Chmielowski B, Lawrence HJ, Shyr Y, Ye F, Li J,
Nolop KB, Lee RJ, Joe AK, Ribas A. Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N Engl
J Med. 2012;366(8):707–14. https://doi.org/10.1056/NEJMoa1112302.

3. Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol. 2018;15(6):
353–65. https://doi.org/10.1038/s41571-018-0002-6.

4. Cordova-Delgado M, Pinto MP, Retamal IN, Muñoz-Medel M, Bravo ML, Fernández MF, Cisternas B, Mondaca S, Sanchez
C, Galindo H, Nervi B, Ibáñez C, Acevedo F, Madrid J, Peña J, Koch E, Maturana MJ, Romero D, de la Jara N, Torres J,

Gong et al. Genome Biology          (2021) 22:109 Page 21 of 23

https://doi.org/10.1097/JTO.0b013e318290868f
https://doi.org/10.1056/NEJMoa1112302
https://doi.org/10.1038/s41571-018-0002-6


Espinoza M, Balmaceda C, Liao Y, Li Z, Freire M, Gárate-Calderón V, Cáceres J, Sepúlveda-Hermosilla G, Lizana R, Ramos
L, Artigas R, Norero E, Crovari F, Armisén R, Corvalán AH, Owen GI, Garrido M. High proportion of potential candidates
for immunotherapy in a Chilean cohort of gastric cancer patients: results of the FORCE1 study. Cancers. 2019;11(9):1275.
https://doi.org/10.3390/cancers11091275.

5. Heeke AL, Pishvaian MJ, Lynce F, Xiu J, Brody JR, Chen W-J, et al. Prevalence of homologous recombination–related
gene mutations across multiple cancer types. JCO Precis Oncol. 2018;2:PO.17.00286. https://doi.org/10.1200/PO.17.00286.

6. Kacew AJ, Harris EJ, Lorch JH, Haddad RI, Chau NG, Rabinowits G, LeBoeuf NR, Schmults CD, Thakuria M, MacConaill LE,
Hanna GJ. Chromosome 3q arm gain linked to immunotherapy response in advanced cutaneous squamous cell
carcinoma. Eur J Cancer. 2019;113:1–9. https://doi.org/10.1016/j.ejca.2019.03.004.

7. Hiley CT, Le Quesne J, Santis G, Sharpe R, de Castro DG, Middleton G, et al. Challenges in molecular testing in non-
small-cell lung cancer patients with advanced disease. Lancet. 2016;388(10048):1002–11. https://doi.org/10.1016/S0140-
6736(16)31340-X.

8. Martin P, Shiau CJ, Pasic M, Tsao M, Kamel-Reid S, Lin S, Tudor R, Cheng S, Higgins B, Burkes R, Ng M, Arif S, Ellis PM,
Hubay S, Kuruvilla S, Laurie SA, Li J, Hwang D, Lau A, Shepherd FA, le LW, Leighl NB. Clinical impact of mutation fraction
in epidermal growth factor receptor mutation positive NSCLC patients. Br J Cancer. 2016;114(6):616–22. https://doi.org/1
0.1038/bjc.2016.22.

9. Groopman EE, Rasouly HM, Gharavi AG. Genomic medicine for kidney disease. Nat Rev Nephrol. 2018;14(2):83–104.
https://doi.org/10.1038/nrneph.2017.167.

10. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, Chandramohan R, Liu ZY, Won HH, Scott SN, Brannon AR,
O'Reilly C, Sadowska J, Casanova J, Yannes A, Hechtman JF, Yao J, Song W, Ross DS, Oultache A, Dogan S, Borsu L,
Hameed M, Nafa K, Arcila ME, Ladanyi M, Berger MF. Memorial Sloan Kettering-integrated mutation profiling of
actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for
solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251–64. https://doi.org/10.1016/j.jmoldx.2014.12.006.

11. Gagan J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med. 2015;7(1):80. https://doi.
org/10.1186/s13073-015-0203-x.

12. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A,
Kaley TJ, Kendall SM, Motzer RJ, Hakimi AA, Voss MH, Russo P, Rosenberg J, Iyer G, Bochner BH, Bajorin DF, al-Ahmadie
HA, Chaft JE, Rudin CM, Riely GJ, Baxi S, Ho AL, Wong RJ, Pfister DG, Wolchok JD, Barker CA, Gutin PH, Brennan CW,
Tabar V, Mellinghoff IK, DeAngelis LM, Ariyan CE, Lee N, Tap WD, Gounder MM, D’Angelo SP, Saltz L, Stadler ZK, Scher
HI, Baselga J, Razavi P, Klebanoff CA, Yaeger R, Segal NH, Ku GY, DeMatteo RP, Ladanyi M, Rizvi NA, Berger MF, Riaz N,
Solit DB, Chan TA, Morris LGT. Tumor mutational load predicts survival after immunotherapy across multiple cancer
types. Nat Genet. 2019;51(2):202–6. https://doi.org/10.1038/s41588-018-0312-8.

13. Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals
the landscape of tumor mutational burden. Genome Med. 2017;9:34. https://doi.org/10.1186/s13073-017-0424-2.

14. FoundationOne. FoundationOne CDx Technical Information. https://www.accessdata.fda.gov/cdrh_docs/pdf17/P17001
9C.pdf. Accessed 24 Feb. 2020.

15. Omics Core by NantHealth, Inc. 510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfPMN/pmn.cfm? ID=K190661. Accessed 24 Mar 2020.

16. PGDx elio tissue complete by Personal Genome Diagnostic, Inc. 510(k) Premarket Notification. https://www.accessdata.
fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm? ID=K192063. Accessed 13 Dec 2020.

17. Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of Cancer site — when a biomarker defines the indication. N
Engl J Med. 2017;377(15):1409–12. https://doi.org/10.1056/NEJMp1709968.

18. FDA approves third oncology drug that targets a key genetic driver of cancer, rather than a specific type of tumor.
https://www.fda.gov/news-events/press-announcements/fda-approves-third-oncology-drug-targets-key-genetic-driver-ca
ncer-rather-specific-type-tumor. Accessed 13 Mar 2020.

19. Meric-Bernstam F, Brusco L, Shaw K, Horombe C, Kopetz S, Davies MA, Routbort M, Piha-Paul SA, Janku F, Ueno N, Hong
D, de Groot J, Ravi V, Li Y, Luthra R, Patel K, Broaddus R, Mendelsohn J, Mills GB. Feasibility of large-scale genomic
testing to facilitate enrollment onto Genomically matched clinical trials. J Clin Oncol. 2015;33(25):2753–62. https://doi.
org/10.1200/JCO.2014.60.4165.

20. Gray SW, Hicks-Courant K, Cronin A, Rollins BJ, Weeks JC. Physicians’ attitudes about multiplex tumor genomic testing. J
Clin Oncol. 2014;32(13):1317–23. https://doi.org/10.1200/JCO.2013.52.4298.

21. Jameson GS, Petricoin EF, Sachdev J, Liotta LA, Loesch DM, Anthony SP, Chadha MK, Wulfkuhle JD, Gallagher RI, Reeder
KA, Pierobon M, Fulk MR, Cantafio NA, Dunetz B, Mikrut WD, von Hoff DD, Robert NJ. A pilot study utilizing multi-omic
molecular profiling to find potential targets and select individualized treatments for patients with previously treated
metastatic breast cancer. Breast Cancer Res Treat. 2014;147(3):579–88. https://doi.org/10.1007/s10549-014-3117-1.

22. Tsongalis GJ, Peterson JD, de AFB, Tunkey CD, Gallagher TL, Strausbaugh LD, et al. Routine use of the ion torrent
AmpliSeq™ Cancer hotspot panel for identification of clinically actionable somatic mutations. Clin Chem Lab Med. 2013;
52(5):707–14. https://doi.org/10.1515/cclm-2013-0883.

23. Garofalo A, Sholl L, Reardon B, Taylor-Weiner A, Amin-Mansour A, Miao D, Liu D, Oliver N, MacConaill L, Ducar M, Rojas-
Rudilla V, Giannakis M, Ghazani A, Gray S, Janne P, Garber J, Joffe S, Lindeman N, Wagle N, Garraway LA, van Allen EM.
The impact of tumor profiling approaches and genomic data strategies for cancer precision medicine. Genome Med.
2016;8(1):79. https://doi.org/10.1186/s13073-016-0333-9.

24. Kuderer NM, Burton KA, Blau S, Rose AL, Parker S, Lyman GH, Blau CA. Comparison of 2 commercially available next-
generation sequencing platforms in oncology. JAMA Oncol. 2017;3(7):996–8. https://doi.org/10.1001/jamaoncol.2016.4983.

25. Garcia EP, Minkovsky A, Jia Y, Ducar MD, Shivdasani P, Gong X, Ligon AH, Sholl LM, Kuo FC, MacConaill LE, Lindeman NI,
Dong F. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in
cancer. Arch Pathol Lab Med. 2017;141(6):751–8. https://doi.org/10.5858/arpa.2016-0527-OA.

26. Jones WD. SEQC2 Oncopanel sequencing working group. A verified genomic reference sample for assessing
performance of cancer panels detecting small variants of low allele frequency. Genome Biol. https://doi.org/10.1186/s13
059-021-02316-z.

Gong et al. Genome Biology          (2021) 22:109 Page 22 of 23

https://doi.org/10.3390/cancers11091275
https://doi.org/10.1200/PO.17.00286
https://doi.org/10.1016/j.ejca.2019.03.004
https://doi.org/10.1016/S0140-6736(16)31340-X
https://doi.org/10.1016/S0140-6736(16)31340-X
https://doi.org/10.1038/bjc.2016.22
https://doi.org/10.1038/bjc.2016.22
https://doi.org/10.1038/nrneph.2017.167
https://doi.org/10.1016/j.jmoldx.2014.12.006
https://doi.org/10.1186/s13073-015-0203-x
https://doi.org/10.1186/s13073-015-0203-x
https://doi.org/10.1038/s41588-018-0312-8
https://doi.org/10.1186/s13073-017-0424-2
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019C.pdf
https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019C.pdf
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?
https://doi.org/10.1056/NEJMp1709968
https://www.fda.gov/news-events/press-announcements/fda-approves-third-oncology-drug-targets-key-genetic-driver-cancer-rather-specific-type-tumor
https://www.fda.gov/news-events/press-announcements/fda-approves-third-oncology-drug-targets-key-genetic-driver-cancer-rather-specific-type-tumor
https://doi.org/10.1200/JCO.2014.60.4165
https://doi.org/10.1200/JCO.2014.60.4165
https://doi.org/10.1200/JCO.2013.52.4298
https://doi.org/10.1007/s10549-014-3117-1
https://doi.org/10.1515/cclm-2013-0883
https://doi.org/10.1186/s13073-016-0333-9
https://doi.org/10.1001/jamaoncol.2016.4983
https://doi.org/10.5858/arpa.2016-0527-OA
https://doi.org/10.1186/s13059-021-02316-z
https://doi.org/10.1186/s13059-021-02316-z


27. MAQC Consortium. The MicroArray quality control (MAQC) project shows inter- and intraplatform reproducibility of
gene expression measurements. Nat Biotechnol. 2006;24(9):1151–61. https://doi.org/10.1038/nbt1239.

28. SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content
by the sequencing quality control consortium. Nat Biotechnol. 2014;32(9):903–14. https://doi.org/10.1038/nbt.2957.

29. MAQC Consortium, Shi L, Campbell G, Jones WD, Campagne F, Wen Z, et al. The MicroArray Quality Control (MAQC)-II
study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol.
2010;28(8):827–38. https://doi.org/10.1038/nbt.1665.

30. Shi L, Perkins RG, Fang H, Tong W. Reproducible and reliable microarray results through quality control: good laboratory
proficiency and appropriate data analysis practices are essential. Curr Opin Biotechnol. 2008;19(1):10–8. https://doi.org/1
0.1016/j.copbio.2007.11.003.

31. Xiao W, SEQC2 Somatic Mutation Working Group. Achieving reproducibility and accuracy in cancer mutation detection
with whole-genome and whole-exome sequencing. bioRxiv. 2019. https://doi.org/10.1101/626440. Accessed 24 Feb
2020.

32. Fang LT, SEQC2 Somatic Mutation Working Group. Establishing reference samples for detection of somatic mutations
and germline variants with NGS technologies. bioRxiv. 2019. https://doi.org/10.1101/625624. Accessed 24 Feb 2020.

33. Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid
tumors. Cancer Discov. 2020;10(12):1808–25. https://doi.org/10.1158/2159-8290.CD-20-0522.

34. Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O,
Fero M, Perou CM, Botstein D, Braman J. Universal reference RNA as a standard for microarray experiments. BMC
Genomics. 2004;5(1):20. https://doi.org/10.1186/1471-2164-5-20.

35. Thermo Scientific. AcroMetrix Oncology Hotspot Control Package Insert. https://www.thermofisher.com/document-
connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FCDD%2Fmanuals%2
FMAN0010820-AMX-Oncology-Hotspot-Ctrl-EN.pdf&title=QWNyb01ldHJpeCBPbmNvbG9neSBIb3RzcG90IENvbnRyb2
wgUGFja2FnZSBJbnNlcnQgW0VOXQ==. Accessed 24 Apr 2019.

36. Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, et al. Scalable open science approach for mutation
calling of tumor exomes using multiple genomic pipelines. Cell Syst. 2018;6(3):271–81.e7. https://doi.org/10.1016/j.cels.2
018.03.002.

37. Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, Stein LD, et al. Pan-cancer analysis of whole genomes. Nature.
2020;578(7793):82–93. https://doi.org/10.1038/s41586-020-1969-6.

38. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic
analyses. Nat Rev Genet. 2014;15(2):121–32. https://doi.org/10.1038/nrg3642.

39. Zhang Y, SEQC2 Oncopanel Sequencing Working Group. Deep oncopanel sequencing reveals fixation time- and within
block position-dependent quality degradation in FFPE processed samples. bioRxiv. 2021. https://doi.org/10.1101/2021.04.
06.438687. Accessed 8 Apr 2021.

40. Willey JC, Morrison T, Austermiller B, Crawford EL, Craig DJ, Blomquist TM, et al. Advancing quality-control for NGS
measurement of actionable mutations in circulating tumor DNA. bioRxiv. 2021. https://doi.org/10.1101/2021.04.06.4384
97. Accessed 8 Apr 2021.

41. Allgäuer M, Budczies J, Christopoulos P, Endris V, Lier A, Rempel E, Volckmar AL, Kirchner M, von Winterfeld M,
Leichsenring J, Neumann O, Fröhling S, Penzel R, Thomas M, Schirmacher P, Stenzinger A. Implementing tumor
mutational burden (TMB) analysis in routine diagnostics—a primer for molecular pathologists and clinicians. Transl Lung
Cancer Res. 2018;7(6):703-715–715–15. https://doi.org/10.21037/tlcr.2018.08.14.

42. Buchhalter I, Rempel E, Endris V, Allgäuer M, Neumann O, Volckmar A-L, Kirchner M, Leichsenring J, Lier A, von
Winterfeld M, Penzel R, Christopoulos P, Thomas M, Fröhling S, Schirmacher P, Budczies J, Stenzinger A. Size matters:
dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer. 2019;144(4):848–58. https://
doi.org/10.1002/ijc.31878.

43. Budczies J, Allgäuer M, Litchfield K, Rempel E, Christopoulos P, Kazdal D, Endris V, Thomas M, Fröhling S, Peters S,
Swanton C, Schirmacher P, Stenzinger A. Optimizing panel-based tumor mutational burden (TMB) measurement. Ann
Oncol. 2019;30(9):1496–506. https://doi.org/10.1093/annonc/mdz205.

44. Gong B, Xu J. SEQC2 Onco-panel Sequencing Working Group - PanCancer panel Study. BioProject PRJNA677997. NCBI.
2021. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA677997. Accessed 26 Feb 2021.

45. Gong B, Xu J. SEQC2 Onco-panel Sequencing Working Group - PanCancer panel Study. figshare. 2021. https://figshare.
com/projects/SEQC2_Onco-panel_Sequencing_Working_Group_-_PanCancer_panel_Study/94520. Accessed 25 Feb
2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gong et al. Genome Biology          (2021) 22:109 Page 23 of 23

https://doi.org/10.1038/nbt1239
https://doi.org/10.1038/nbt.2957
https://doi.org/10.1038/nbt.1665
https://doi.org/10.1016/j.copbio.2007.11.003
https://doi.org/10.1016/j.copbio.2007.11.003
https://doi.org/10.1101/626440
https://doi.org/10.1101/625624
https://doi.org/10.1158/2159-8290.CD-20-0522
https://doi.org/10.1186/1471-2164-5-20
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FCDD%2Fmanuals%2FMAN0010820-AMX-Oncology-Hotspot-Ctrl-EN.pdf&title=QWNyb01ldHJpeCBPbmNvbG9neSBIb3RzcG90IENvbnRyb2wgUGFja2FnZSBJbnNlcnQgW0VOXQ==
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FCDD%2Fmanuals%2FMAN0010820-AMX-Oncology-Hotspot-Ctrl-EN.pdf&title=QWNyb01ldHJpeCBPbmNvbG9neSBIb3RzcG90IENvbnRyb2wgUGFja2FnZSBJbnNlcnQgW0VOXQ==
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FCDD%2Fmanuals%2FMAN0010820-AMX-Oncology-Hotspot-Ctrl-EN.pdf&title=QWNyb01ldHJpeCBPbmNvbG9neSBIb3RzcG90IENvbnRyb2wgUGFja2FnZSBJbnNlcnQgW0VOXQ==
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FCDD%2Fmanuals%2FMAN0010820-AMX-Oncology-Hotspot-Ctrl-EN.pdf&title=QWNyb01ldHJpeCBPbmNvbG9neSBIb3RzcG90IENvbnRyb2wgUGFja2FnZSBJbnNlcnQgW0VOXQ==
https://doi.org/10.1016/j.cels.2018.03.002
https://doi.org/10.1016/j.cels.2018.03.002
https://doi.org/10.1038/s41586-020-1969-6
https://doi.org/10.1038/nrg3642
https://doi.org/10.1101/2021.04.06.438687
https://doi.org/10.1101/2021.04.06.438687
https://doi.org/10.1101/2021.04.06.438497
https://doi.org/10.1101/2021.04.06.438497
https://doi.org/10.21037/tlcr.2018.08.14
https://doi.org/10.1002/ijc.31878
https://doi.org/10.1002/ijc.31878
https://doi.org/10.1093/annonc/mdz205
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA677997
https://figshare.com/projects/SEQC2_Onco-panel_Sequencing_Working_Group_-_PanCancer_panel_Study/94520
https://figshare.com/projects/SEQC2_Onco-panel_Sequencing_Working_Group_-_PanCancer_panel_Study/94520

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Overview of study design
	Sensitive detection of SNVs in the focused regions by all panels
	Impact of variant type, VAF cutoff, and genomic region on sensitivity
	False positive rates were significantly higher beyond the focused regions
	Enabling oncopanels of sufficient size to estimate TMB

	Discussion
	Methods
	Testing samples
	Participating panels, test sites, and study protocol
	Reproducibility by VAF ranges per panel
	Sensitivity estimation by VAF ranges
	FP rate estimation approaches
	Description of three sub-regions for each panel
	Evaluation of technical run-to-run variability in panel TMB estimates via simulation
	Model the deviation in TMB rate from WES by pan-cancer panels via TCGA dataset

	Supplementary Information
	Acknowledgements
	Review history
	Peer review information
	Disclaimers
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

