32 research outputs found

    Characterization of Changes in Serum Anti-Glycan Antibodies in Crohn's Disease – a Longitudinal Analysis

    Get PDF
    INTRODUCTION: Anti-glycan antibodies are a promising tool for differential diagnosis and disease stratification of patients with Crohn's disease (CD). We longitudinally assessed level and status changes of anti-glycan antibodies over time in individual CD patients as well as determinants of this phenomenon. METHODS: 859 serum samples derived from a cohort of 253 inflammatory bowel disease (IBD) patients (207 CD, 46 ulcerative colitis (UC)) were tested for the presence of anti-laminarin (Anti-L), anti-chitin (Anti-C), anti-chitobioside (ACCA), anti-laminaribioside (ALCA), anti-mannobioside (AMCA) and anti-Saccharomyces cerevisiae (gASCA) antibodies by ELISA. All patients had at least two and up to eleven serum samples taken during the disease course. RESULTS: Median follow-up time for CD was 17.4 months (Interquartile range (IQR) 8.0, 31.6 months) and for UC 10.9 months (IQR 4.9, 21.0 months). In a subgroup of CD subjects marked changes in the overall immune response (quartile sum score) and levels of individual markers were observed over time. The marker status (positive versus negative) remained widely stable. Neither clinical phenotype nor NOD2 genotype was associated with the observed fluctuations. In a longitudinal analysis neither changes in disease activity nor CD behavior led to alterations in the levels of the glycan markers. The ability of the panel to discriminate CD from UC or its association with CD phenotypes remained stable during follow-up. In the serum of UC patients neither significant level nor status changes were observed. CONCLUSIONS: While the levels of anti-glycan antibodies fluctuate in a subgroup of CD patients the antibody status is widely stable over time

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and KrĂĽppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Strain-Dependent Temperature-Sensitive Phase in Crown Gall Tumorigenesis

    No full text

    Gibberellic Acid-induced Phase Change in Hedera helix

    No full text
    corecore