1,119 research outputs found

    Sample preparation of metal alloys by electric discharge machining

    Get PDF
    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported

    Development of a drift-correction procedure for a direct-reading spectrometer

    Get PDF
    A procedure which provides automatic correction for drifts in the radiometric sensitivity of each detector channel in a direct-reading emission spectrometer is described. Such drifts are customarily controlled by the regular analyses of standards, which provide corrections for changes in the excitational, optical, and electronic components of the instrument. This standardization procedure, however, corrects for the optical and electronic drifts. It is a step that must be taken if the time, effort, and cost of processing standards is to be minimized. This method of radiometric drift correction uses a 1,000-W tungsten-halogen reference lamp to illuminate each detector through the same optical path as that traversed during sample analysis. The responses of the detector channels to this reference light are regularly compared with channel response to the same light intensity at the time of analytical calibration in order to determine and correct for drift. Except for placing the lamp in position, the procedure is fully automated and compensates for changes in spectral intensity due to variations in lamp current. A discussion of the implementation of this drift-correction system is included

    The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. IV. Lupus Observed with MIPS

    Get PDF
    We present maps of 7.78 square degrees of the Lupus molecular cloud complex at 24, 70, and 160μ160\:\mum. They were made with the Spitzer Space Telescope's Multiband Imaging Photometer for Spitzer (MIPS) instrument as part of the Spitzer Legacy Program, ``From Molecular Cores to Planet-Forming Disks'' (c2d). The maps cover three separate regions in Lupus, denoted I, III, and IV. We discuss the c2d pipeline and how our data processing differs from it. We compare source counts in the three regions with two other data sets and predicted star counts from the Wainscoat model. This comparison shows the contribution from background galaxies in Lupus I. We also create two color magnitude diagrams using the 2MASS and MIPS data. From these results, we can identify background galaxies and distinguish them from probable young stellar objects. The sources in our catalogs are classified based on their spectral energy distribution (SED) from 2MASS and Spitzer wavelengths to create a sample of young stellar object candidates. From 2MASS data, we create extinction maps for each region and note a strong corresponence between the extinction and the 160μ160\:\mum emission. The masses we derived in each Lupus cloud from our extinction maps are compared to masses estimated from 13^{13}CO and C18^{18}O and found to be similar to our extinction masses in some regions, but significantly different in others. Finally, based on our color-magnitude diagrams, we selected 12 of our reddest candidate young stellar objects for individual discussion. Five of the 12 appear to be newly-discovered YSOs.Comment: 15 pages, 17 figures, uses emulateapj.cls. Accepted for publication in ApJ. A version with high-quality figures can be found at http://peggysue.as.utexas.edu/SIRTF

    Abundant Crystalline Silicates in the Disk of a Very Low Mass Star

    Get PDF
    We announce the discovery of SST-Lup3-1, a very low mass star close to the brown dwarf boundary in Lupus III with a circum(sub)stellar disk, discovered by the "Cores to Disks" Spitzer Legacy Program from mid-infrared, with very conspicuous crystalline silicate features in its spectrum. It is the first of such objects with a full 5-35 μm spectrum taken with the IRS, and it shows strong 10 and 20 μm silicate features with high feature-to-continuum ratios and clear crystalline features out to 33 μm. The dust in the disk upper layer has a crystalline silicate grain fraction between 15% and 33%, depending on the assumed dust continuum. The availability of the full Spitzer infrared spectrum allows an analysis of the dust composition as a function of temperature and position in the disk. The hot (~300 K) dust responsible for the 10 μm feature consists of a roughly equal mix of small (~0.1 μm) and large (~1.5 μm) grains, whereas the cold (~70 K) dust responsible for the longer wavelength silicate features contains primarily large grains (>1 μm). Since the cold dust emission arises from deeper layers in the inner (<3 AU) disk as well as from the surface layers of the outer (3-5 AU) disk, this provides direct evidence for combined grain growth and settling in the disk. The inferred crystalline mass fractions in the two components are comparable. Since only the inner 0.02 AU of the disk is warm enough to anneal the amorphous silicate grains, even the lowest fraction of 15% of crystalline material requires either very efficient mixing or other formation mechanisms

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds: VI. Perseus Observed with MIPS

    Get PDF
    We present observations of 10.6 square degrees of the Perseus molecular cloud at 24, 70, and 160 microns with the Spitzer Space Telescope Multiband Imaging Photometer for Spitzer (MIPS). The image mosaics show prominent, complex extended emission dominated by illuminating B stars on the East side of the cloud, and by cold filaments of 160 micron emission on the West side. Of 3950 point sources identified at 24 microns, 1141 have 2MASS counterparts. A quarter of these populate regions of the Ks vs. Ks-[24] diagram that are distinct from stellar photospheres and background galaxies, and thus are likely to be cloud members with infrared excess. Nearly half (46%) of these 24 micron excess sources are distributed outside the IC 348 and NGC 1333 clusters. NGC 1333 shows the highest fraction of stars with flat or rising spectral energy distributions (28%), while Class II SEDs are most common in IC 348. These results are consistent with previous relative age determinations for the two clusters. The intercluster region contains several tightly clumped (r~0.1 pc) young stellar aggregates whose members exhibit a wide variety of infrared spectral energy distributions characteristic of different circumstellar environments. One possible explanation is a significant age spread among the aggregate members, such that some have had time to evolve more than others. Alternatively, if the aggregate members all formed at roughly the same time, then remarkably rapid circumstellar evolution would be required to account for the association of Class I and Class III sources at ages <~1 Myr. We highlight important results for several other objects as well (full abstract in the paper).Comment: 82 pages, 32 figures, accepted to ApJS; ALL figures (even line drawings) had to be degraded to be accepted by the system here; the full-res figures are available in the version linked from the 'publications' area available at http://peggysue.as.utexas.edu/SIRTF
    corecore