50 research outputs found

    Broadly tunable (440-670 nm) solid-state organic laser with disposable capsules

    Full text link
    An innovative concept of thin-film organic solid-state laser is proposed, with diffraction-limited output and a broad tuning range covering the visible spectrum under UV optical pumping. The laser beam is tunable over 230 nm, from 440 to 670 nm, with a 3 nm full width at half maximum typical spectral width. The structure consists of a compact fixed bulk optical cavity, a polymeric intracavity etalon for wavelength tuning, as well as five different disposable glass slides coated with a dye-doped polymer film, forming a very simple and low-cost gain medium. The use of interchangeable/disposable "gain capsules" is an alternative solution to photodegradation issues, since gain chips can be replaced without realignment of the cavity. The laser lifetime of a single chip in ambient conditions and without encapsulation was extrapolated to be around 107 pulses at a microjoule energy-per-pulse level

    White Organic Light-Emitting Diodes with fine chromaticity tuning via ultrathin layer position shifting

    Get PDF
    Non-doped white organic light-emitting diodes using an ultrathin yellow-emitting layer of rubrene (5,6,11,12-tetraphenylnaphtacene) inserted on either side of the interface between a hole-transporting NPB (4,4'-bis[N-(1-naphtyl)-N-phenylamino]biphenyl) layer and a blue-emitting DPVBi (4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl) layer are described. Both the thickness and the position of the rubrene layer allow fine chromaticity tuning from deep-blue to pure-yellow via bright-white with CIE coordinates (x= 0.33, y= 0.32), a external quantum efficiency of 1.9%, and a color rendering index of 70. Such a structure also provides an accurate sensing tool to measure the exciton diffusion length in both DPVBi and NPB (8.7 and 4.9 nm respectively)

    Comment on " Gain coefficient method for amplified spontaneous emission in thin waveguided film of a conjugated polymer " [APL 93, 163307 (2008)]

    Full text link
    Comment on " Gain coefficient method for amplified spontaneous emission in thin waveguided film of a conjugated polymer " [APL 93, 163307 (2008)

    Highly-efficient, diffraction-limited laser emission from a Vertical External Cavity Surface-emitting Organic Laser

    Full text link
    We report on a solid-state laser structure being the organic counterpart of the Vertical External-Cavity Surface-Emitting Laser (VECSEL) design. The gain medium is a poly (methyl methacrylate) film doped with Rhodamine 640, spin-casted onto the High-Reflectivity mirror of a plano-concave resonator. Upon pumping by 7-ns pulses at 532 nm, a diffraction-limited beam (M^2=1) was obtained, with a conversion efficiency of 43%; higher peak powers (2kW) could be attained when resorting to shorter (0.5 ns) pump pulses. The spectrum was controlled by the thickness of the active layer playing the role of an intracavity etalon; tunability is demonstrated over up to 20 nm

    Tunable Ultraviolet Vertically-emitting Organic Laser

    No full text
    International audienceA solid-state organic thin-film laser with intracavity frequency doubling is reported. Tunable ultraviolet emission from 309 to 322 nm is achieved from a vertical external cavity surface-emitting organic laser, with 2 % efficiency (1 µJ at 315 nm). The laser comprises a polymethyl(methacrylate) layer doped with Rhodamine 640, spun-cast onto a plane mirror, a remote concave mirror, a nonlinear crystal and a dichroic separator. The output is spectrally narrow (<0.5 nm FWHM) and tunable through phase-matching selection of the fundamental radiation lasing modes. These results highlight a low-cost and portable alternative to tunable UV laser sources, useful for spectroscopic applications

    Recent advances in solid-state organic lasers

    Full text link
    Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the great challenges remaining for achieving direct electrical pumping. Finally, we discuss the very recent demonstration of new kinds of organic lasers based on polaritons or surface plasmons, which open new and very promising routes in the field of organic nanophotonics

    Inkjet-printed vertically emitting solid-state organic lasers

    Full text link
    In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically-emitting thin-film organic lasers, and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 uJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several um thicknesses are realized thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm-1 at 550-680 nm. Standard laser dyes like Pyromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size " printed pixels " of 50 mm 2 present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50um x 50um AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost and can be used as fully disposable items. This works opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated

    Enhanced generation of VUV radiation by four-wave mixing in mercury using pulsed laser vaporization

    Full text link
    The efficiency of a coherent VUV source at 125 nm, based on 2-photon resonant four-wave mixing in mercury vapor, has been enhanced by up to 2 orders of magnitude. This enhancement was obtained by locally heating a liquid Hg surface with a pulsed excimer laser, resulting in a high density vapor plume in which the nonlinear interaction occurred. Energies up to 5 &#956;J (1 kW peak power) have been achieved while keeping the overall Hg cell at room temperature, avoiding the use of a complex heat pipe. We have observed a strong saturation of the VUV yield when peak power densities of the fundamental beams exceed the GW/cm2 range, as well as a large intensity-dependant broadening (up to ~30 cm-1) of the two-photon resonance. The source has potential applications for high resolution interference lithography and photochemistry

    Etude des phénomènes de photodégradation et de polarisation dans les lasers organiques solides à cavité verticale externe

    Get PDF
    Although organic solid-state dye lasers can provide wavelenght tunability in the whole visible spectrum and offers perpectives of low-cost compact lasers, they are still limited by several drawbacks, especially photodegradation. The geometry of a Vertical External Cavity Surface-emitting Organic Laser (VECSOL) enables organic lasers to reach high energies, excellent conversion efficiences and good beam quality, it also enables an external control on many parameters, a feature that we have udes here to study the photodegradation phenomenon as well as some polarization properties of organic solid-state lasers. In the first part of this thesis, we studied the lifetime of the laser upon varying several parameters (pump pulsewidth, repetition rate, output coupling, ...) and we found that the intracavity laser intensity, independently of the pump intensity, had a major on photodegradation rate. Moreover, we observed that the profile of the laser beam was also degrading with time : while it is Gaussian in the beginning it gradually shifts to an annular shape. In the second part, we investigated the polarization properties of VECSOLs, with a special emphasis on fluorescence properties of some typical dyes used in lasers. The crucial role played by resonant nonradiative energy transfers between dye molecules (HOMO-FRET) is evidenced and enables explaining the observed fluorescence depolarization, compared to the expected limiting fluorescence anisotropy. Energy transfers happen to play a negligible role above laser threshold, as the organic laser beam is shown to be linearly polarized in a wide range of experimental conditions when excitation occurs in the first singlet state.Les lasers organiques solides disposent d’atouts considérables par rapport aux autres types de laser : l’accordabilité en longueur d’onde dans le visible et la simplicité de fabrication. Ils restent néanmoins à la marge d’une commercialisation et le phénomène de photodégradation en est la principale cause. Le VECSOL pour Vertical External Cavity Surface-emitting Organic Laser est une structure de laser particulièrement bien adaptée pour l’étudier car elle permet un contrôle très simple de plusieurs paramètres pouvant entrer en jeu dans le phénomène de photodégradation. Ainsi lors de cette thèse, où nous avons cherché à comprendre quels sont les facteurs ayant une influence sur la durée de vie des lasers, l’intensité intracavité s’est par exemple révélée être un élément crucial : plus elle est grande, plus la durée du laser est grande. Par ailleurs, un suivi en temps réel de la forme du faisceau laser a montré que celle-ci, gaussienne au départ, devenait annulaire avant de s’éteindre traduisant la « mort » progressive des molécules sollicitées pendant le pompage.Une seconde partie de la thèse concerne la polarisation de la fluorescence des molécules organiques utilisées en laser solide. Nous avons montré que la concentration en colorant influençait grandement la dépolarisation de l’émission spontanée. Enfin, en fonctionnement laser, le faisceau reste polarisé rectilignement (comme la pompe) quel que soit la concentration en colorant
    corecore