193 research outputs found
Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors
In the last decade, the aquatic eddy correlation (EC) technique has proven to be a powerful approach for non-invasive measurements of oxygen fluxes across the sediment water interface. Fundamental to the EC approach is the correlation of turbulent velocity and oxygen concentration fluctuations measured with high frequencies in the same sampling volume. Oxygen concentrations are commonly measured with fast responding electrochemical microsensors. However, due to their own oxygen consumption, electrochemical microsensors are sensitive to changes of the diffusive boundary layer surrounding the probe and thus to changes in the ambient flow velocity. The so-called stirring sensitivity of microsensors constitutes an inherent correlation of flow velocity and oxygen sensing and thus an artificial flux which can confound the benthic flux determination. To assess the artificial flux we measured the correlation between the turbulent flow velocity and the signal of oxygen microsensors in a sealed annular flume without any oxygen sinks and sources. Experiments revealed significant correlations, even for sensors designed to have low stirring sensitivities of ~0.7%. The artificial fluxes depended on ambient flow conditions and, counter intuitively, increased at higher velocities because of the nonlinear contribution of turbulent velocity fluctuations. The measured artificial fluxes ranged from 2-70 mmol m(-2) d(-1) for weak and very strong turbulent flow, respectively. Further, the stirring sensitivity depended on the sensor orientation towards the flow. For a sensor orientation typically used in field studies, the artificial flux could be predicted using a simplified mathematical model. Optical microsensors (optodes) that should not exhibit a stirring sensitivity were tested in parallel and did not show any significant correlation between O2 signals and turbulent flow. In conclusion, EC data obtained with electrochemical sensors can be affected by artificial flux and we recommend using optical microsensors in future EC-studies
An assessment of the precision and confidence of aquatic eddy correlation measurements
The quantification of benthic fluxes with the aquatic eddy correlation (EC) technique is based on simultaneous measurement of the current velocity and a targeted bottom water parameter (e. g., O-2, temperature). High-frequency measurements (64Hz) are performed at a single point above the seafloor using an acoustic Doppler velocimeter (ADV) and a fast-responding sensor. The advantages of aquatic EC technique are that 1) it is noninvasive, 2) it integrates fluxes over a large area, and 3) it accounts for in situ hydrodynamics. The aquatic EC has gained acceptance as a powerful technique; however, an accurate assessment of the errors introduced by the spatial alignment of velocity and water constituent measurements and by their different response times is still needed. Here, this paper discusses uncertainties and biases in the data treatment based on oxygen EC flux measurements in a large-scale flume facility with well-constrained hydrodynamics. These observations are used to review data processing procedures and to recommend improved deployment methods, thus improving the precision, reliability, and confidence of EC measurements. Specifically, this study demonstrates that 1) the alignment of the time series based on maximum cross correlation improved the precision of EC flux estimations; 2) an oxygen sensor with a response time of <0.4 s facilitates accurate EC fluxes estimates in turbulence regimes corresponding to horizontal velocities <11 cm s(-1); and 3) the smallest possible distance (<1 cm) between the oxygen sensor and the ADV's sampling volume is important for accurate EC flux estimates, especially when the flow direction is perpendicular to the sensor's orientation
Processes Driving Iron and Manganese Dispersal From the TAG Hydrothermal Plume (Mid-Atlantic Ridge): Results From a GEOTRACES Process Study
Hydrothermal vents are a recognized source of trace elements to the ocean inventory. Nevertheless, the contribution of slow-spreading ridges remains poorly resolved. To address this, high-resolution dissolved (<0.45 ÎŒm) iron (dFe) and manganese (dMn) samples were collected during the GEOTRACES HERMINE GApr07 process study at the Mid Atlantic Ridge. Samples were collected at nine stations, from the TAG vent site to 75 km south-southwest following the neutrally buoyant plume. Concentrations of dMn and dFe ranged from 71 ± 6 and 51 ± 2 nmol kgâ1 right above the vent site to 0.43 ± 0.01 and 1.56 ± 0.02 nmol kgâ1 at the most distal station, respectively. Using a 5-box model coupled with our data, we show that as the plume traveled away from the vent, aggregation processes controlled dFe concentrations in the first 2 km, with an aggregation rate averaging between 8.0 ± 0.6 and 0.11 ± 0.04 nmol Lâ1 dâ1, respectively in the first and second kilometer. Aggregation, likely of small colloidal particles, led to partitioning of the size fractionated Fe pool, as 6% of the dFe was moved into the particulate size fraction. Further away, disaggregation processes became more prevalent, with rates ranging from 0.27 ± 0.02 to 0.008 ± 0.001 nmol Lâ1 dâ1, enriching the dFe pool by 10%. The computed decrease of hydrothermal Fe within the neutrally buoyant plume was likely caused by flocculation of small Fe oxyhydroxide particles. This process resulted in Fe aggregate formation with radii estimated to range between 14 and 20 ÎŒm in the first km from TAG. Between 2 and 30 km from the vent site, the radii ranged between 2 and 4 ÎŒm
Temporal variability of live (stained) benthic foraminiferal faunas in a river-dominated shelf – Faunal response to rapid changes of the river influence (RhĂŽne prodelta, NW Mediterranean)
In the context of the French research project CHACCRA (Climate and Human-induced Alterations in Carbon Cycling at the River-seA connection), living (rose Bengal-stained) benthic foraminifera were investigated at two stations (24 and 67 m depth) in the RhĂŽne prodelta (NW Mediterranean, Gulf of Lions). The aim of this study was to precise the response of benthic foraminiferal faunas to temporal changes of the RhĂŽne River inputs (e.g. organic and terrigeneous material). Each site was sampled in April 2007, September 2007, May 2008 and December 2008, permitting to observe foraminiferal faunas of the 63â150 and >150 ÎŒm size fractions under a wide range of environmental conditions. Obvious variations in foraminiferal faunal composition were observed during the four investigated periods at the shallowest Station A located in the close vicinity of the RhĂŽne River mouth. After major RhĂŽne River flood events, different colonisation stages were observed with foraminiferal faunas responding with an opportunistic strategy few days to weeks after the creation of a peculiar sedimentary environment (<i>Leptohalysis scottii</i>, May 2008) or high organic matter supplies (<i>Ammonia tepida</i>, December 2008). Under more stable conditions, relatively diverse and equilibrated faunas grew in the sediments. Species benefited from noticeable input of riverine phytodetritus to the sediment during spring bloom conditions (April 2007; e.g. <i>Bolivina dilatata</i>, <i>Nonionella stella</i>, <i>Stainforthia fusiformis</i>), or high amounts of still bio-available organic matter under more oligotrophic conditions (September 2007; e.g. <i>Ammonia tepida</i>, <i>Psammosphaera fusca</i>). The reduced influence of the RhĂŽne River input at the farther Station N led to less contrasted environmental conditions during the four sampling periods, and so to less obvious variations in foraminiferal faunal composition. During reduced riverine influence (i.e. low RhĂŽne discharge), species able to feed on fresh phytodetritus (e.g. <i>Clavulina cylindrica</i>, <i>Hopkinsina atlantica</i>, <i>Nonionella iridea</i> and <i>Nonionella turgida</i>) benefited from eutrophic conditions of the spring bloom (April 2007, May 2008). Conversely, the occurrence of <i>Nouria polymorphinoides</i> under oligotrophic conditions (September 2007, December 2008) was indicative of a benthic environment potentially disturbed by bottom currents. This study put into evidence the extremely rapid response of benthic foraminiferal faunas to strong variations in environmental conditions mostly induced by the RhĂŽne dynamics
Constraining instantaneous fluxes and integrated compositions of fluvially discharged organic matter
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip, F., et al. (2018). Constraining instantaneous fluxes and integrated compositions of fluvially discharged organic matter. Geochemistry, Geophysics, Geosystems, 19, 2453 2462. doi: 10.1029/2018GC007539.Fluvial export of organic carbon (OC) and burial in ocean sediments comprises an important carbon sink, but fluxes remain poorly constrained, particularly for specific organic components. Here OC and lipid biomarker contents and isotopic characteristics of suspended matter determined in depth profiles across an active channel close to the terminus of the Danube River are used to constrain instantaneous OC and biomarker fluxes and integrated compositions during high to moderate discharges. During high (moderate) discharge, the total Danube exports 8 (7) kg/s OC, 7 (3) g/s higher plantâderived longâchain fatty acids (LCFA), 34 (21) g/s shortâchain fatty acids (SCFA), and 0.5 (0.2) g/s soil bacterial membrane lipids (brGDGTs). Integrated stable carbon isotopic compositions were TOC: â28.0 (â27.6)â°, LCFA: â33.5 (â32.8)â° and Î14C TOC: â129 (â38)â°, LCFA: â134 (â143)â°, respectively. Such estimates will aid in establishing quantitative links between production, export, and burial of OC from the terrestrial biosphere.This project was funded by the Swiss National Science Foundation SNF. Grant Number: 200021_140850. F.P. acknowledges funding from NWOâVENI grant 863.13.016. We thank the sampling crews from both field campaigns (Björn Buggle, James Saenz, Alissa Zuijdgeest, Marilu Tavagna, Stefan Eugen Filip, Silvia Lavinia Filip, Mihai, Clayton Magill, Thomas Blattmann, and Michael Albani), Daniel Montluçon for lab support and Hannah Gies for PCGC work. Figures, tables, and equations can be found in supporting information
Influence of hydrodynamic processes on the fate of sedimentary organic matter on continental margins
Understanding the effects of hydrodynamic forcing on organic matter (OM) composition is important for assessment of organic carbon (OC) burial in marginal seas on regional and global scales. Here we examine the relationships between regional oceanographic conditions (bottom shear stress), and the physical characteristics (mineral surface area and grain size) and geochemical properties (OC content [OC%] and carbon isotope compositions [13C, 14C]) of a large suite of surface sediments from the Chinese marginal seas to assess the influence of hydrodynamic processes on the fate of OM on shallow continental shelves. Our results suggest that 14C content is primarily controlled by organoâmineral interactions and hydrodynamically driven resuspension processes, highlighted by (i) positive correlations between 14C content and OC% (and surface area) and (ii) negative correlations between 14C content and grain size (and bottom shear stress). Hydrodynamic processes influence 14C content due to both OC aging during lateral transport and accompanying selective degradation of OM associated with sediment (re) mobilization, these effects being superimposed on the original 14C characteristics of carbon source. Our observations support the hypotheses of Blair and Aller (2012, https://doi.org/10.1146/annurevâmarineâ120709â142717) and Leithold et al. (2016, https://doi.org/10.1016/j.earscirev.2015.10.011) that hydrodynamically driven sediment translocation results in greater OC 14C depletion in broad, shallow marginal seas common to passive margin settings than on active margins. On a global scale, this may influence the extent to which continental margins act as net carbon sources and sinks. Our findings thus suggest that hydrodynamic processes are important in shaping the nature, dynamics, and magnitude of OC export and burial in passive marginal seas
The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa
The capture efficiency and feeding behaviour of the cold-water coral (CWC) Lophelia pertusa (Linnaeus, 1758) were investigated considering: (1) different food types, (2) different food sizes and (3) different current speeds and temperatures. This study used two different multifactorial experimental approaches: (1) Corals were subjected to three different flow speeds (2, 5 and 10 cm sâ 1) in 5 l volume tanks, and three different food types (alive zooplankton, alive algae, and dry particulate organic carbon) were offered to the corals under each current regime, analysing the capture rates of the corals under these different flow velocities. (2) In a flume, the feeding behaviour of the coral polyps was studied under different current speed regimes (1, 7, 15 and 27 cm sâ 1) and a temperature change over a range of 8â12 °C. The obtained results confirm that low flow speeds (below 7 cm sâ 1) appear optimal for a successful prey capture, and temperature did not have an effect on polyp expansion behaviour for L. pertusa. In conclusion, flow speeds clearly impact food capture efficiency in L. pertusa, with zooplankton predominantly captured prey at low flow velocities (2 cm sâ 1) and phytoplankton captured at higher flow velocities of 5 cm sâ 1. This split in capture efficiency may allow corals to exploit different food sources under different tidal and flow conditionsVersiĂłn del editor2,263
- âŠ