518 research outputs found

    RNA Interference by Single- and Double-stranded siRNA With a DNA Extension Containing a 3′ Nuclease-resistant Mini-hairpin Structure

    Get PDF
    Selective gene silencing by RNA interference (RNAi) involves double-stranded small interfering RNA (ds siRNA) composed of single-stranded (ss) guide and passenger RNAs. siRNA is recognized and processed by Ago2 and C3PO, endonucleases of the RNA-induced silencing complex (RISC). RISC cleaves passenger RNA, exposing the guide RNA for base-pairing with its homologous mRNA target. Remarkably, the 3' end of passenger RNA can accommodate a DNA extension of 19-nucleotides without loss of RNAi function. This construct is termed passenger-3'-DNA/ds siRNA and includes a 3'-nuclease-resistant mini-hairpin structure. To test this novel modification further, we have now compared the following constructs: (I) guide-3'-DNA/ds siRNA, (II) passenger-3'-DNA/ds siRNA, (III) guide-3'-DNA/ss siRNA, and (IV) passenger-3'-DNA/ss siRNA. The RNAi target was SIRT1, a cancer-specific survival factor. Constructs I-III each induced selective knock-down of SIRT1 mRNA and protein in both noncancer and cancer cells, accompanied by apoptotic cell death in the cancer cells. Construct IV, which lacks the SIRT1 guide strand, had no effect. Importantly, the 3'-DNA mini-hairpin conferred nuclease resistance to constructs I and II. Resistance required the double-stranded RNA structure since single-stranded guide-3'-DNA/ss siRNA (construct III) was susceptible to serum nucleases with associated loss of RNAi activity. The potential applications of 3'-DNA/siRNA constructs are discussed. Molecular Therapy-Nucleic Acids (2014) 2, e141; doi:10.1038/mtna.2013.68; published online 7 January 2014

    Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane

    Get PDF
    Despite being engineered to avoid renal clearance, many cationic polymer (polycation)-based siRNA nanoparticles that are used for systemic delivery are rapidly eliminated from the circulation. Here, we show that a component of the renal filtration barrier—the glomerular basement membrane (GBM)—can disassemble cationic cyclodextrin-containing polymer (CDP)-based siRNA nanoparticles and, thereby, facilitate their rapid elimination from circulation. Using confocal and electron microscopies, positron emission tomography, and compartment modeling, we demonstrate that siRNA nanoparticles, but not free siRNA, accumulate and disassemble in the GBM. We also confirm that the siRNA nanoparticles do not disassemble in blood plasma in vitro and in vivo. This clearance mechanism may affect any nanoparticles that assemble primarily by electrostatic interactions between cationic delivery components and anionic nucleic acids (or other therapeutic entities)

    Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors

    Get PDF
    Several different approaches exist to generate expressed RNA interference (RNAi) precursors for multiple target inhibition, a strategy referred to as combinatorial (co)RNAi. One such approach makes use of RNA Pol III-expressed long hairpin RNAs (lhRNAs), which are processed by Dicer to generate multiple unique short interfering siRNA effectors. However, because of inefficient intracellular Dicer processing, lhRNA duplexes have been limited to generating two independent effective siRNA species. In this study, we describe a novel strategy whereby four separate anti-HIV siRNAs were generated from a single RNA Pol III-expressed transcript. Two optimized lhRNAs, each comprising two active anti-HIV siRNAs, were placed in tandem to form a double long hairpin (dlhRNA) expression cassette, which encodes four unique and effective siRNA sequences. Processing of the 3′ position lhRNA was more variable but effective multiple processing was possible by manipulating the order of the siRNA-encoding sequences. Importantly, unlike shRNAs, Pol III-expressed dlhRNAs did not compete with endogenous and exogenous microRNAs to disrupt the RNAi pathway. The versatility of expressed lhRNAs is greatly expanded and we provide a mechanism for generating transcripts with modular lhRNAs motifs that contribute to improved coRNAi

    Forward and robust selection of the most potent and noncellular toxic siRNAs from RNAi libraries

    Get PDF
    Use of highly potent small interfering RNAs (siRNAs) can substantially reduce dose-dependent cytotoxic and off-target effects. We developed a genetic forward approach by fusing the cytosine deaminase gene with targets for the robust identification of highly potent siRNAs from RNA interference (RNAi) libraries that were directly delivered into cells via bacterial invasion. We demonstrated that two simple drug selection cycles performed conveniently in a single container predominately enriched two siRNAs targeting the MVP gene (siMVP) and one siRNA targeting the egfp gene (siEGFP) in surviving cells and these proved to be the most effective siRNAs reported. Furthermore, the potent siRNAs isolated from the surviving cells possessed noncellular toxic characteristics. Interestingly, the length of highly potent siMVPs identified could be as short as 16-mer, and increasing the length of their native sequences dramatically reduced RNAi potency. These results suggest that the current approach can robustly discover the most potent and nontoxic siRNAs in the surviving cells, and thus has great potential in facilitating RNAi applications by minimizing the dose-dependent and sequence nonspecific side effects of siRNAs

    An RNA targeted to the HIV-1 LTR promoter modulates indiscriminate off-target gene activation

    Get PDF
    Transcriptional gene silencing (TGS) can be achieved by small RNAs targeted to upstream promoter regions. Previously we characterized siRNAs targeted to the HIV-1 long terminal repeat (LTR) promoter at site 247, and found that a 21-base antisense strand of siRNA-247 (LTR-247as) suppressed LTR-mediated expression. To characterize the specificity of LTR-247as, vectors expressing antisense RNAs targeted to a region spanning 50 bases up- and downstream of the 247 target site were generated. LTR-247as+7, a ∼22 base antisense RNA that is shifted by only seven bases upstream of LTR-247as, showed a significant increase in LTR-driven reporter gene expression that was independent of cell type and active chromatin methyl-marks. Promoter-targeting siRNAs have been recently shown to induce gene activation. However, here we demonstrate gene activation via a sequence-specific off-target effect. Microarray analysis of LTR-247as+7-treated cultures resulted in the deregulation of ∼185 genes. A gene of unknown function, C10orf76, was responsive to inhibition by LTR-247as+7 and the loss of C10orf76 resulted in the upregulation of several genes that were activated by LTR-247as+7. These data suggest caution when using short antisense RNAs or siRNAs designed to target promoter sequences, since promoter-targeted RNAs may have unintended inhibitory effects against factors with suppressive gene activity

    Diabetes Complications: The MicroRNA Perspective

    Get PDF
    There remains a critical need to better understandthe underlying disease mechanisms responsiblefor diabetes complications in order to developnew and improved therapeutic strategies for these chronic conditions. These complications are broadly classified as microvascular, including neuropathy, nephrop-athy, and retinopathy, or macrovascular, including car-diovascular and peripheral vascular disease. The risk for developing complications is influenced by many factors including duration of diabetes and genetic factors. Current treatments have resulted in only a partial reduction in this risk, and the management of these conditions remains a major unmet need for those with diabetes. New insights have come from an unlikely ally, the worm C. elegans, in which research has identified a novel family of endoge-nous, small (;22 nucleotides), single stranded, noncoding RNA molecules known as microRNAs (miRNAs) as de-velopmental regulators (1,2). These molecules, only iden

    Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo

    Get PDF
    Malignant glioma is a severe cancer with a poor prognosis. Local occurrence and rare metastases of malignant glioma make it a suitable target for gene therapy. Several studies have demonstrated the importance of Src kinase in different cancers. However, these studies have focused mainly on Src-deficient mice or pharmacological inhibitors of Src. In this study we have used Src small hairpin RNAs (shRNAs) in a lentiviral backbone to mimic a long-term stable treatment and determined the role of Src in tumor tissues. Efficacy of Src shRNAs was confirmed in vitro demonstrating up to 90% target gene inhibition. In a mouse malignant glioma model, Src shRNA tumors were almost 50-fold smaller in comparison to control tumors and had significantly reduced vascularity. In a syngenic rat intracranial glioma model, Src shRNA-transduced tumors were smaller and these rats had a survival benefit over the control rats. In vivo treatment was enhanced by chemotherapy and histone deacetylase inhibition. Our results emphasise the importance of Src in tumorigenesis and demonstrate that it can be efficiently inhibited in vitro and in vivo in two independent malignant glioma models. In conclusion, Src is a potential target for RNA interference-mediated treatment of malignant glioma

    Silencing microRNA by interfering nanoparticles in mice

    Get PDF
    MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate post-transcriptional gene expression and are important in many biological processes. Disease-associated miRNAs have been shown to become potential targets for therapeutic intervention. Functions of miRNAs can be inhibited by using antisense oligonucleotides, called anti-miRs, complimentary to the miRNA sequences. Here, we show that systemic delivery of a chemically stabilized anti-miR-122 complexed with interfering nanoparticles (iNOPs) effectively silences the liver-expressed miR-122 in mice. Intravenous administration of 2 mg kg−1 chemically modified anti-miR-122 complexed with iNOP-7 resulted in 83.2 ± 3.2% specific silencing of miR-122, which was accompanied by regulating gene expression in liver and lowering of plasma cholesterol. The specific silencing of miR-122 was long lasting and did not induce an immune response. Our results demonstrate that iNOPs can successfully deliver anti-miR to specifically target and silence miRNA in clinically acceptable and therapeutically affordable doses
    corecore