163 research outputs found
Electronic excitations and the tunneling spectra of metallic nanograins
Tunneling-induced electronic excitations in a metallic nanograin are
classified in terms of {\em generations}: subspaces of excitations containing a
specific number of electron-hole pairs. This yields a hierarchy of populated
excited states of the nanograin that strongly depends on (a) the available
electronic energy levels; and (b) the ratio between the electronic relaxation
rate within the nano-grain and the bottleneck rate for tunneling transitions.
To study the response of the electronic energy level structure of the nanograin
to the excitations, and its signature in the tunneling spectrum, we propose a
microscopic mean-field theory. Two main features emerge when considering an Al
nanograin coated with Al oxide: (i) The electronic energy response fluctuates
strongly in the presence of disorder, from level to level and excitation to
excitation. Such fluctuations produce a dramatic sample dependence of the
tunneling spectra. On the other hand, for excitations that are energetically
accessible at low applied bias voltages, the magnitude of the response,
reflected in the renormalization of the single-electron energy levels, is
smaller than the average spacing between energy levels. (ii) If the tunneling
and electronic relaxation time scales are such as to admit a significant
non-equilibrium population of the excited nanoparticle states, it should be
possible to realize much higher spectral densities of resonances than have been
observed to date in such devices. These resonances arise from tunneling into
ground-state and excited electronic energy levels, as well as from charge
fluctuations present during tunneling.Comment: Submitted to the Physical Review
Exact Solution for the Critical State in Thin Superconductor Strips with Field Dependent or Anisotropic Pinning
An exact analytical solution is given for the critical state problem in long
thin superconductor strips in a perpendicular magnetic field, when the critical
current density j_c(B) depends on the local induction B according to a simple
three-parameter model. This model describes both isotropic superconductors with
this j_c(B) dependence, but also superconductors with anisotropic pinning
described by a dependence j_c(theta) where theta is the tilt angle of the flux
lines away from the normal to the specimen plane
Impact of repeated short light exposures on sustained pupil responses in an fMRI environment
Light triggers numerous non-image forming (NIF), or non-visual, biological effects. The brain correlates of these NIF effects have been investigated, notably using Magnetic Resonance Imaging (MRI) and short light exposures varying in irradiance and spectral quality. However, it is not clear whether having light in subsequent blocks may induce carry over effects of one light block onto the next, thus biasing the study. We reasoned that pupil light reflex (PLR) was an easy readout of one of the NIF effects of light that could be used to address this issue. We characterized the sustained PLR in 13 to 16 healthy young individuals under short light exposures during three distinct cognitive processes (executive, emotional and attentional). Light conditions pseudo-randomly alternated between monochromatic orange light [0.16 melanopic Equivalent Daylight Illuminance (mel EDI) lux] and polychromatic blue-enriched white light of three different levels [37, 92, 190 mel EDI lux]. As expected, higher melanopic irradiance was associated with larger sustained PLR in each cognitive domain. This result was stable over the light block sequence under higher melanopic irradiance levels as compared to lower ones. Exploratory frequency-domain analyses further revealed that PLR was more variable within a light block under lower melanopic irradiance levels. Importantly, PLR varied across tasks independently of the light condition pointing to a potential impact of the light history and/or cognitive context on PLR. Together, our results emphasize that the distinct contribution and adaptation of the different retinal photoreceptors influence the NIF effects of light and therefore potentially their brain correlates
Overcritical states of a superconductor strip in a magnetic environment
A current-carrying superconducting strip partly penetrated by magnetic flux
and surrounded by a bulk magnet of high permeability is considered. Two types
of samples are studied: those with critical current controlled by an edge
barrier dominating over the pinning, and those with high pinning-mediated
critical current masking the edge barrier.It is shown for both cases that the
current distribution in a central flux-free part of the strip is strongly
affected by the actual shape of the magnetic surroundings. Explicit analytical
solutions for the sheet current and self-field distributions are obtained which
show that, depending on the geometry, the effect may suppress the total
loss-free transport current of the strip or enhance it by orders of magnitude.
The effect depends strongly on the shape of the magnet and its distance to the
superconductor but only weakly on the magnetic permeability.Comment: 20 pages, 20 figure
Deriving the mass of particles from Extended Theories of Gravity in LHC era
We derive a geometrical approach to produce the mass of particles that could
be suitably tested at LHC. Starting from a 5D unification scheme, we show that
all the known interactions could be suitably deduced as an induced symmetry
breaking of the non-unitary GL(4)-group of diffeomorphisms. The deformations
inducing such a breaking act as vector bosons that, depending on the
gravitational mass states, can assume the role of interaction bosons like
gluons, electroweak bosons or photon. The further gravitational degrees of
freedom, emerging from the reduction mechanism in 4D, eliminate the hierarchy
problem since generate a cut-off comparable with electroweak one at TeV scales.
In this "economic" scheme, gravity should induce the other interactions in a
non-perturbative way.Comment: 30 pages, 1 figur
Effect of surrounding environment on atomic structure and equilibrium shape of growing nanocrystals: gold in/on SiO2
We report on the equilibrium shape and atomic structure of thermally-processed Au nanocrystals (NCs) as determined by high resolution transmission electron microscopy (TEM). The NCs were either deposited on SiO2surface or embedded in SiO2layer. Quantitative data on the NCs surface free energy were obtained via the inverse Wulff construction. Nanocrystals inside the SiO2layer are defect-free and maintain a symmetrical equilibrium shape during the growth. Nanocrystals on SiO2surface exhibit asymmetrical equilibrium shape that is characterized by the introduction of twins and more complex atomic defects above a critical size. The observed differences in the equilibrium shape and atomic structure evolution of growing NCs in and on SiO2is explained in terms of evolution in isotropic/anisotropic environment making the surface free energy function angular and/or radial symmetric/asymmetric affecting the rotational/translational invariance of the surface stress tensor
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Self-help groups challenge health care systems in the US and UK
Purpose: This research considers how self-help groups (SHGs) and self- help organizations (SHOs) contribute to consumerist trends in two different societies: United States and United Kingdom. How do the health care systems and the voluntary sectors affect the kinds of social changes that SHGs/SHOs make?
Methodology/approach: A review of research on the role of SHGs/SHOs in contributing to national health social movements in the UK and US was made. Case studies of the UK and the US compare the characteristics of their health care systems and their voluntary sector. Research reviews of two community level self-help groups in each country describe the kinds of social changes they made.
Findings: The research review verified that SHGs/SHOs contribute to national level health social movements for patient consumerism. The case studies showed that community level SHGs/SHOs successfully made the same social changes but on a smaller scale as the national movements, and the health care system affects the kinds of community changes made.
Research limitations: A limited number of SHGs/SHOs within only two societies were studied. Additional SHGs/SHOs within a variety of societies need to be studied.
Originality/value of chapter
Community SHGs/SHOs are often trivialized by social scientists as just inward-oriented support groups, but this chapter shows that local groups contribute to patient consumerism and social changes but in ways that depend on the kind of health care system and societal context
Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers
Item does not contain fulltextBACKGROUND: Height and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown. METHODS: We applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models. RESULTS: Observed height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m(2) increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (Pinteraction < 0.05). CONCLUSION: Our observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population
- …