57 research outputs found

    Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities

    Get PDF
    Albedo?a primary control on surface melt?varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25?km transect dissecting the western, ablating sector of the ice sheet. Our results demonstrate that distributed surface impurities?an admixture of dust, black carbon and pigmented algae?explain 73% of the observed spatial variability in albedo and are responsible for the dark zone itself. Crevassing and supraglacial water also drive albedo reduction but due to their limited extent, explain just 12 and 15% of the observed variability respectively. Cryoconite, concentrated in large holes or fluvial deposits, is the darkest surface type but accounts for <1% of the area and has minimal impact. We propose that the ongoing emergence and dispersal of distributed impurities, amplified by enhanced ablation and biological activity, will drive future expansion of Greenland's dark zone.publishersversionPeer reviewe

    Illuminating the dynamic rare biosphere of the Greenland Ice Sheet's Dark Zone

    Get PDF
    Greenland's Dark Zone is the largest contiguous region of bare terrestrial ice in the Northern Hemisphere and microbial processes play an important role in driving its darkening and thereby amplifying melt and runoff from the ice sheet. However, the dynamics of these microbiota have not been fully identified. Here we present joint 16S rRNA gene and 16S rRNA (cDNA) comparison of input (snow), storage (cryoconite), and output (supraglacial stream water) habitats across the Dark Zone over the melt season. We reveal that all three Dark Zone communities have a preponderance of rare taxa exhibiting high protein synthesis potential (PSP). Furthermore, taxa with high PSP represent highly connected ‘bottlenecks’ within community structure, consistent with their roles as metabolic hubs. Finally, low abundance-high PSP taxa affiliated with Methylobacterium within snow and stream water suggest a novel role for Methylobacterium in the carbon cycle of Greenlandic snowpacks, and importantly, the export of potentially active methylotrophs to the bed of the Greenland Ice Sheet. By comparing the dynamics of bulk and potentially active microbiota in the Dark Zone of the Greenland Ice Sheet we provide novel insights into the mechanisms and impacts of the microbial colonization of this critical region of our melting planet

    Derivation of High Spatial Resolution Albedo from UAV Digital Imagery:Application over the Greenland Ice Sheet

    Get PDF
    Measurements of albedo are a prerequisite for modeling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimeter resolution albedo products with accuracies of ?5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique could become increasingly common in field studies and used for a wide range of applications. These include the mapping of debris, dust, cryoconite and bioalbedo, and directly constraining surface energy balance models.publishersversionPeer reviewe

    Storage and export of microbial biomass across the western Greenland Ice Sheet

    Get PDF
    The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques, we demonstrate that interstitial water flow is slow (~10−2 m d−1), while flow cytometry enumeration reveals this pathway delivers 5 × 108 cells m−2 d−1 to supraglacial streams, equivalent to a carbon flux up to 250 g km−2 d−1. We infer that cellular carbon accumulation in the weathering crust exceeds fluvial export, promoting biomass sequestration, enhanced carbon cycling, and biological albedo reduction. We estimate that up to 37 kg km−2 of cellular carbon is flushed from the weathering crust environment of the western Greenland Ice Sheet each summer, providing an appreciable flux to support heterotrophs and methanogenesis at the bed

    Rapid reviews versus full systematic reviews: An inventory of current methods and practice in health technology assessment

    Get PDF
    Objectives: This review assessed current practice in the preparation of rapid reviews by health technology assessment (HTA) organizations, both internationally and in the Australian context, and evaluated the available peer-reviewed literature pertaining to the methodology used in the preparation of these reviews. Methods: A survey tool was developed and distributed to a total of fifty International Network of Agencies for Health Technology Assessment (INAHTA) members and other selected HTA organizations. Data on a broad range of themes related to the conduct of rapid reviews were collated, discussed narratively, and subjected to simple statistical analysis where appropriate. Systematic searches of the Cochrane Library, EMBASE, MEDLINE, and the Australian Medical Index were undertaken in March 2007 to identify literature pertaining to rapid review methodology. Comparative studies, guidelines, program evaluations, methods studies, commentaries, and surveys were considered for inclusion. Results: Twenty-three surveys were returned (46 percent), with eighteen agencies reporting on thirty-six rapid review products. Axiomatic trends were identified, but there was little cohesion between organizations regarding the contents, methods, and definition of a rapid review. The twelve studies identified by the systematic literature search did not specifically address the methodology underpinning rapid review; rather, many highlighted the complexity of the area. Authors suggested restricted research questions and truncated search strategies as methods to limit the time taken to complete a review. Conclusions: Rather than developing a formalized methodology by which to conduct rapid reviews, agencies should work toward increasing the transparency of the methods used for each review. It is perhaps the appropriate use, not the appropriate methodology, of a rapid review that requires future consideration.Amber Watt, Alun Cameron, Lana Sturm, Timothy Lathlean, Wendy Babidge, Stephen Blamey, Karen Facey, David Hailey, Inger Norderhaug and Guy Madder

    Algae drive enhanced darkening of bare ice on the Greenland ice sheet

    Get PDF
    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of non-algal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere

    K2-263 b: a 50 d period sub-Neptune with a mass measurement using HARPS-N

    Get PDF
    This paper reports on the validation and mass measurement of K2-263b, a sub-Neptune orbiting a quiet G9V star. Using K2 data from campaigns C5 and C16, we find this planet to have a period of 50.818947±0.00009450.818947\pm 0.000094 days and a radius of 2.41±0.122.41\pm0.12 R_{\oplus}. We followed this system with HARPS-N to obtain 67 precise radial velocities. A combined fit of the transit and radial velocity data reveals that K2-263b has a mass of 14.8±3.114.8\pm3.1 M_{\oplus}. Its bulk density (5.71.4+1.65.7_{-1.4}^{+1.6} g cm3^{-3}) implies that this planet has a significant envelope of water or other volatiles around a rocky core. EPIC211682544b likely formed in a similar way as the cores of the four giant planets in our own Solar System, but for some reason, did not accrete much gas. The planetary mass was confirmed by an independent Gaussian process-based fit to both the radial velocities and the spectroscopic activity indicators. K2-263b belongs to only a handful of confirmed K2 exoplanets with periods longer than 40 days. It is among the longest periods for a small planet with a precisely determined mass using radial velocities.Comment: 10 pages, 6 figures, accepted for publication in MNRAS. v2: EPIC ID changed to assigned K2 nam

    COVID-19 trajectories among 57 million adults in England: a cohort study using electronic health records

    Get PDF
    BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK

    The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals

    Get PDF
    To dissect the genetic architecture of blood pressure and assess effects on target-organ damage, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry and genotypes from an additional 140,886 individuals were used for validation. We identified 66 blood pressure loci, of which 17 were novel and 15 harbored multiple distinct association signals. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in blood pressure control through modulation of vascular tone across multiple tissues. The 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent. The 66-SNP blood pressure risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our findings expand current knowledge of blood pressure pathways and highlight tissues beyond the classic renal system in blood pressure regulation

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore