58 research outputs found

    Comparación del test directo de anticuerpos fluorescentes y el cultivo bacteriológico para detección de Brucella suis

    Get PDF
    Methods available for detection of Brucella sp from different specimens include bacteriological culture or detection of specific DNA fragments by polymerase chain reaction. The use of fluorescein-labeled anti-Brucella globulin for demonstrating this antigen in animal tissues is a simple, easy, reproducible, cheap and fast technique. The aim of this work was to evaluate the gamma globulin fraction of polyclonal anti-Brucella abortus serum labeled with fluorescein iso-tio-cyanate (FITC-labeled antibody): 1) against different smooth and rough Brucella sp, 2) against bacterium of other genus, and 3) to compare direct fluorescent antibody test results with bacteriological culture for the detection of B. suis in different tissues from infected animals. This conjugate stained all Brucella sp with different intensities but it did not stain any heterologous bacterium tested. Background fluorescence associated with its use on smears from infected sources of different specimens was particularly low. Most of the infected tissues showed the presence of yellowish-green fluorescent organisms with brucella morphology. The tested FITC-labeled antibody allows a quick, effective and inexpensive diagnosis of brucellosis.El diagnóstico de brucelosis se apoya en el cultivo bacteriológico o en la detección de fragmentos de ADN de la bacteria mediante la reacción en cadena de la polimerasa. El empleo de una inmunoglobulina anti-Brucella conjugada a fluoresceína para la detección de este antígeno en tejidos constituye una técnica simple, fácil, reproducible, económica y rápida. El objetivo de este trabajo fue evaluar la fracción gammaglobulínica de un suero policlonal anti-Brucella abortus marcada con isotiocianato de fluoresceína (FITC), 1) contra distintas especies lisas y rugosas de Brucella sp, 2) contra bacterias de otros géneros, y 3) comparar los resultados obtenidos con la inmunofluorescencia directa y el cultivo bacteriológico para la detección de B. suis en distintos tejidos de porcinos infectados. Este conjugado detectó todas las brucelas con distinta intensidad de fluorescencia, pero no hubo fluorescencia inespecífica cuando se ensayaron las bacterias de otros géneros. La fluorescencia de fondo en muestras de los distintos tejidos infectados fue baja. La mayoría de los tejidos infectados mostraron la presencia de microorganismos verde-fluorescentes con la morfología de las brucelas. El anticuerpo conjugado a FITC permitió un diagnóstico de brucelosis rápido, efectivo y económico

    Galaxy-galaxy lensing in EAGLE: comparison with data from 180 deg² of the KiDS and GAMA surveys

    Get PDF
    We present predictions for the galaxy–galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 < R/(h− 1 Mpc) < 2, and for five logarithmically equispaced stellar mass bins in the range 10.3 < log10(Mstar/ M⊙) < 11.8. We compare these excess surface density profiles to the observed signal from background galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the Galaxy And Mass Assembly (GAMA) survey. Exploiting the GAMA galaxy group catalogue, the profiles of central and satellite galaxies are computed separately for groups with at least five members to minimize contamination. EAGLE predictions are in broad agreement with the observed profiles for both central and satellite galaxies, although the signal is underestimated at R ≈ 0.5–2 h− 1 Mpc for the highest stellar mass bins. When central and satellite galaxies are considered simultaneously, agreement is found only when the selection function of lens galaxies is taken into account in detail. Specifically, in the case of GAMA galaxies, it is crucial to account for the variation of the fraction of satellite galaxies in bins of stellar mass induced by the flux-limited nature of the survey. We report the inferred stellar-to-halo mass relation and we find good agreement with recent published results. We note how the precision of the GGL profiles in the simulation holds the potential to constrain fine-grained aspects of the galaxy-dark matter connection

    Comparison of an X-ray selected sample of massive lensing clusters with the MareNostrum Universe LCDM simulation

    Full text link
    A long-standing problem of strong lensing by galaxy clusters regards the observed high rate of giant gravitational arcs as compared to the predictions in the framework of the "standard" cosmological model. Recently, few other inconsistencies between theoretical expectations and observations have been claimed which regard the large size of the Einstein rings and the high concentrations of few clusters with strong lensing features. All of these problems consistently indicate that observed galaxy clusters may be gravitational lenses stronger than expected. We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for the sample of 12 MACS clusters at z>0.5z>0.5 presented in Ebeling et al. (2007) and discussed in Zitrin et al. (2010). We find that simulated clusters produce 50\sim 50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by 25\sim 25% between simulations and observations. We estimate that, due to cluster triaxiality and orientation biases affecting the lenses with the largest cross sections, the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of 2\sim 2 larger than expected from the Λ\LambdaCDM model. The arc statistics, the Einstein ring, and the concentration problems in strong lensing clusters are mitigated but not solved on the basis of our analysis. Nevertheless, due to the lack of redshifts for most of the multiple image systems used for modeling the MACS clusters, the results of this work will need to be verified with additional data. The upcoming CLASH program will provide an ideal sample for extending our comparison (abridged).Comment: 11 pages, 9 figures, accepted for publication on A&

    Strong lensing in the MareNostrum Universe: biases in the cluster lens population

    Full text link
    Strong lensing is one of the most direct probes of the mass distribution in the inner regions of galaxy clusters. It can be used to constrain the density profiles and to measure the mass of the lenses. Moreover, the abundance of strong lensing events can be used to constrain the structure formation and the cosmological parameters through the so-called "arc-statistics" approach. However, several issues related to the usage of strong lensing clusters in cosmological applications are still controversial, leading to the suspect that several biases may affect this very peculiar class of objects. With this study we aim at better understanding the properties of galaxy clusters which can potentially act as strong lenses. We do so by investigating the properties of a large sample of galaxy clusters extracted from the N-body/hydrodynamical simulation MareNostrum Universe. We explore the correlation between the cross section for lensing and many properties of clusters, like the mass, the three-dimensional and projected shapes, their concentrations, the X-ray luminosity and the dynamical activity. We find that the probability of strong alignments between the major axes of the lenses and the line of sight is a growing function of the lensing cross section. In projection, the strong lenses appear rounder within R200, but we find that their cores tend to be more elliptical as the lensing cross section increases. We also find that the cluster concentrations estimated from the projected density profiles tend to be biased high. The X-ray luminosity of strong lensing clusters is higher than that of normal lenses of similar mass and redshift. This is particular significant for the least massive lenses. Finally, we find that the strongest lenses generally exhibit an excess of kinetic energy within the virial radius, indicating that they are more dynamically active than usual clusters.Comment: 22 pages, 18 figures, accepted for publication on A&

    Cosmological Galaxy Formation Simulations Using SPH

    Full text link
    We present the McMaster Unbiased Galaxy Simulations (MUGS), the first 9 galaxies of an unbiased selection ranging in total mass from 5×1011\times10^{11} M_\odot to 2×1012\times10^{12} M_\odot simulated using n-body smoothed particle hydrodynamics (SPH) at high resolution. The simulations include a treatment of low temperature metal cooling, UV background radiation, star formation, and physically motivated stellar feedback. Mock images of the simulations show that the simulations lie within the observed range of relations such as that between color and magnitude and that between brightness and circular velocity (Tully-Fisher). The greatest discrepancy between the simulated galaxies and observed galaxies is the high concentration of material at the center of the galaxies as represented by the centrally peaked rotation curves and the high bulge-to-total ratios of the simulations determined both kinematically and photometrically. This central concentration represents the excess of low angular momentum material that long has plagued morphological studies of simulated galaxies and suggests that higher resolutions and a more accurate description of feedback will be required to simulate more realistic galaxies. Even with the excess central mass concentrations, the simulations suggest the important role merger history and halo spin play in the formation of disks.Comment: 16 pages, 16 figures, submitted to MNRAS, movies available at http://mugs.mcmaster.ca . Comments welcome

    Elliptical Galaxies and Bulges of Disk Galaxies: Summary of Progress and Outstanding Issues

    Full text link
    This is the summary chapter of a review book on galaxy bulges. Bulge properties and formation histories are more varied than those of ellipticals. I emphasize two advances: 1 - "Classical bulges" are observationally indistinguishable from ellipticals, and like them, are thought to form by major galaxy mergers. "Disky pseudobulges" are diskier and more actively star-forming (except in S0s) than are ellipticals. Theys are products of the slow ("secular") evolution of galaxy disks: bars and other nonaxisymmetries move disk gas toward the center, where it starbursts and builds relatively flat, rapidly rotating components. This secular evolution is a new area of galaxy evolution work that complements hierarchical clustering. 2 - Disks of high-redshift galaxies are unstable to the formation of mass clumps that sink to the center and merge - an alternative channel for the formation of classical bulges. I review successes and unsolved problems in the formation of bulges+ellipticals and their coevolution (or not) with supermassive black holes. I present an observer's perspective on simulations of dark matter galaxy formation including baryons. I review how our picture of the quenching of star formation is becoming general and secure at redshifts z < 1. The biggest challenge is to produce realistic bulges+ellipticals and disks that overlap over a factor of 10**3 in mass but that differ from each other as observed over that whole range. Second, how does hierarchical clustering make so many giant, bulgeless galaxies in field but not cluster environments? I argue that we rely too much on AGN and star-formation feedback to solve these challenges.Comment: 46 pages, 10 postscript figures, accepted for publication in Galactic Bulges, ed. E. Laurikainen, R. F. Peletier, & D. A. Gadotti (New York: Springer), in press (2015

    The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    Get PDF
    We use the first 100 sq. deg. of overlap between the Kilo-Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey to determine the galaxy halo mass of ~10,000 spectroscopically-confirmed satellite galaxies in massive (M>1013h1MM > 10^{13}h^{-1}{\rm M}_\odot) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro-Frenk-White (NFW) density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses logMsub/(h1M)11.712.2\log M_{\rm sub} /(h^{-1}{\rm M}_\odot) \approx 11.7 - 12.2 consistent across group-centric distance within the errorbars. Given their typical stellar masses, logM,sat/(h2M)10.5\log M_{\rm \star,sat}/(h^{-2}{\rm M}_\odot) \sim 10.5, such total masses imply stellar mass fractions of M,sat/Msub0.04h1M_{\rm \star,sat} /M_{\rm sub} \approx 0.04 h^{-1} . The average subhalo hosting these satellite galaxies has a mass Msub0.015MhostM_{\rm sub} \sim 0.015M_{\rm host} independent of host halo mass, in broad agreement with the expectations of structure formation in a Λ\LambdaCDM universe

    Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data

    Get PDF
    Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy–galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using ∼100deg2∼100deg2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy–galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h−1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment

    Floristic analysis of a high-speed railway embankment in a Mediterranean landscape

    Get PDF
    We analyzed the floristic composition of a 4.5 km-long segment of a high-speed railway in Lazio, central Italy, which travels on an artificial embankment through an intensively-farmed landscape. In total, 287 vascular plant species were recorded. The life-form distribution was found to be similar to that of the regional species pool, with high percentages of therophytes (38%) and phanerophytes (13%). In the chorological spectrum the Mediterranean floristic element prevailed (44%), while alien species were 8% of the flora. The phytosociological spectrum showed a high diversity of characteristic species from the class Stellarietea mediae or its subordinate syntaxa (26%), and in particular from the order Thero-Brometalia (Mediterranean, sub-nitrophilous annual communities). Species from forest syntaxa had a relatively high diversity (9%). These results suggest that the ecological filtering provided by the Mediterranean regional climate controlled species assemblage even in a completely artificial habitat, preventing floristic homogenization: the flora of the studied railway section is only partially »ruderalized«, while it keeps strong links with the regional (semi-) natural plant communities. However, in contrast to what is observed in central and north Europe, the railway sides studied in the present paper do not seem to represent a refugial habitat for rare species from grassland communities, mainly because in Italy semi-natural dry grasslands are still widely represented

    ASKI: full-sky lensing map making algorithms

    Full text link
    Within the context of upcoming full-sky lensing surveys, the edge-preserving non- linear algorithm Aski is presented. Using the framework of Maximum A Posteriori inversion, it aims at recovering the full-sky convergence map from surveys with masks. It proceeds in two steps: CCD images of crowded galactic fields are deblurred using automated edge-preserving deconvolution; once the reduced shear is estimated, the convergence map is also inverted via an edge- preserving method. For the deblurring, it is found that when the observed field is crowded, this gain can be quite significant for realistic ground-based surveys when both positivity and edge-preserving penalties are imposed during the iterative deconvolution. For the convergence inversion, the quality of the reconstruction is investigated on noisy maps derived from the horizon N-body simulation, with and without Galactic cuts, and quantified using one-point statistics, power spectra, cluster counts, peak patches and the skeleton. It is found that the reconstruction is able to interpolate and extrapolate within the Galactic cuts/non-uniform noise; its sharpness-preserving penalization avoids strong biasing near the clusters of the map; it reconstructs well the shape of the PDF as traced by its skewness and kurtosis; the geometry and topology of the reconstructed map is close to the initial map as traced by the peak patch distribution and the skeleton's differential length; the two-points statistics of the recovered map is consistent with the corresponding smoothed version of the initial map; the distribution of point sources is also consistent with the corresponding smoothing, with a significant improvement when edge preserving prior is applied. The contamination of B-modes when realistic Galactic cuts are present is also investigated. Leakage mainly occurs on large scales.Comment: 24 pages, 21 figures accepted for publication to MNRAS
    corecore