81 research outputs found

    Reaching micro-arcsecond astrometry with long baseline optical interferometry; application to the GRAVITY instrument

    Full text link
    A basic principle of long baseline interferometry is that an optical path difference (OPD) directly translates into an astrometric measurement. In the simplest case, the OPD is equal to the scalar product between the vector linking the two telescopes and the normalized vector pointing toward the star. However, a too simple interpretation of this scalar product leads to seemingly conflicting results, called here "the baseline paradox". For micro-arcsecond accuracy astrometry, we have to model in full the metrology measurement. It involves a complex system subject to many optical effects: from pure baseline errors to static, quasi-static and high order optical aberrations. The goal of this paper is to present the strategy used by the "General Relativity Analysis via VLT InTerferometrY" instrument (GRAVITY) to minimize the biases introduced by these defects. It is possible to give an analytical formula on how the baselines and tip-tilt errors affect the astrometric measurement. This formula depends on the limit-points of three type of baselines: the wide-angle baseline, the narrow-angle baseline, and the imaging baseline. We also, numerically, include non-common path higher-order aberrations, whose amplitude were measured during technical time at the Very Large Telescope Interferometer. We end by simulating the influence of high-order common-path aberrations due to atmospheric residuals calculated from a Monte-Carlo simulation tool for Adaptive optics systems. The result of this work is an error budget of the biases caused by the multiple optical imperfections, including optical dispersion. We show that the beam stabilization through both focal and pupil tracking is crucial to the GRAVITY system. Assuming the instrument pupil is stabilized at a 4 cm level on M1, and a field tracking below 0.2λ/D\lambda/D, we show that GRAVITY will be able to reach its objective of 10μ\muas accuracy.Comment: 14 pages. Accepted by A&

    Model Order Reduction applied to a linear Finite Element model of a squirrel cage induction machine based on POD approach

    Get PDF
    The Proper Orthogonal Decomposition (POD) approach is applied to a linear Finite Element (FE) model of a squirrel cage induction machine. In order to obtain a reduced model valid on the whole operating range, snapshots are extracted from the simulation of typical tests such as at locked rotor and at the synchronous speed. Then, the reduced model of the induction machine is used to simulate different operating points with variable rotation speed and the results are compared to the full FE model to show the effectiveness of the proposed approach

    GRAVITY: getting to the event horizon of Sgr A*

    Full text link
    We present the second-generation VLTI instrument GRAVITY, which currently is in the preliminary design phase. GRAVITY is specifically designed to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We have identified the key design features needed to achieve this goal and present the resulting instrument concept. It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near infrared wavefront sensing adaptive optics; fringe tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that the planned design matches the scientific needs; in particular that 10 microarcsecond astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given the availability of suitable phase reference sources.Comment: 13 pages, 11 figures, to appear in the conference proceedings of SPIE Astronomical Instrumentation, 23-28 June 2008, Marseille, Franc

    Evidence for X-ray synchrotron emission from simultaneous mid-IR to X-ray observations of a strong Sgr A* flare

    Get PDF
    This paper reports measurements of Sgr A* made with NACO in L' -band (3.80 um), Ks-band (2.12 um) and H-band (1.66 um) and with VISIR in N-band (11.88 um) at the ESO VLT, as well as with XMM-Newton at X-ray (2-10 keV) wavelengths. On 4 April, 2007, a very bright flare was observed from Sgr A* simultaneously at L'-band and X-ray wavelengths. No emission was detected using VISIR. The resulting SED has a blue slope (beta > 0 for nuL_nu ~ nu^beta, consistent with nuL_nu ~ nu^0.4) between 12 micron and 3.8 micron. For the first time our high quality data allow a detailed comparison of infrared and X-ray light curves with a resolution of a few minutes. The IR and X-ray flares are simultaneous to within 3 minutes. However the IR flare lasts significantly longer than the X-ray flare (both before and after the X-ray peak) and prominent substructures in the 3.8 micron light curve are clearly not seen in the X-ray data. From the shortest timescale variations in the L'-band lightcurve we find that the flaring region must be no more than 1.2 R_S in size. The high X-ray to infrared flux ratio, blue nuL_nu slope MIR to L' -band, and the soft nuL_nu spectral index of the X-ray flare together place strong constraints on possible flare emission mechanisms. We find that it is quantitatively difficult to explain this bright X-ray flare with inverse Compton processes. A synchrotron emission scenario from an electron distribution with a cooling break is a more viable scenario.Comment: ApJ, 49 pages, 9 figure

    Near-infrared proper motions and spectroscopy of infrared excess sources at the Galactic Center

    Full text link
    There are a number of faint compact infrared excess sources in the central stellar cluster of the Milky Way. Their nature and origin is unclear. In addition to several isolated objects of this kind we find a small but dense cluster of co-moving sources (IRS13N) about 3" west of SgrA* just 0.5" north of the bright IRS13E cluster of WR and O-type stars. Based on their color and brightness, there are two main possibilities: (1) they may be dust embedded stars older than few Myr, or (2) extremely young, dusty stars with ages less than 1Myr. We present fist H- and Ks-band identifications or proper motions of the IRS13N members, the high velocity dusty S-cluster object (DSO), and other infrared excess sources in the central field. We also present results of NIR H- and Ks-band ESO-SINFONI integral field spectroscopy of ISR13N. We show that within the uncertainties, the proper motions of the IRS13N sources in Ks- and L'-band are identical. This indicates that the bright L'-band IRS13N sources are indeed dust enshrouded stars rather than core-less dust clouds. The proper motions show that the IRS13N sources are not strongly gravitationally bound to each other implying that they have been formed recently. We also present a first H- and Ks-band identification as well as proper motions and HKsL'-colors of a fast moving DSO which was recently found in the cluster of high speed S-stars that surround the super-massive black hole Sagittarius A* (SgrA*). Most of the compact L'-band excess emission sources have a compact H- or Ks-band counterpart and therefore are likely stars with dust shells or disks. Our new results and orbital analysis from our previous work favor the hypothesis that the infrared excess IRS13N members and other dusty sources close to SgrA* are very young dusty stars and that star formation at the GC is a continuously ongoing process.Comment: 20 pages, 18 figures, 4 tables plus appendix with 16 figures and 3 tables accepted by A&

    GCIRS34W: An irregular variable in the Galactic Centre

    Full text link
    We report the results of time-resolved photometric and spectroscopic near-infrared observations of the Ofpe/WN9 star and LBV candidate GCIRS34W in the Galactic Centre star cluster. Diffraction limited resolution photometric observations obtained in H and K bands show a strong, non-periodic variability on time scales from months to years in both bands accompanied by variations of the stellar colour. Three K band spectra obtained in 1996, 2003 and 2004 with integral field spectrometers are identical within their accuracies and exclude significant spectroscopic variability. The most probable explanation of the stellar photometric variability is obscuration by circumstellar material ejected by the star. The approximated position of GCIRS34W in a HR diagram is located between O supergiants and LBVs, suggesting that this star is a transitional object between these two phases of stellar evolution.Comment: 6 pages, 3 figures, accepted by A&

    Future mmVLBI Research with ALMA: a European vision

    Get PDF
    Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constant

    Science and Adaptive Optics Requirements of MICADO, the E-ELT adaptive optics imaging camera

    Get PDF
    MICADO is the adaptive optics imaging camera being studied for the E-ELT. Its design has been optimised for use with MCAO, but will have its own SCAO module for the initial operational phase; and in principle could also be used with GLAO or LTAO. In this contribution, we outline a few of the science drivers for MICADO and show how these have shaped its design. The science drivers have led to a number of requirements on the AO system related to astrometry, photometry, and PSF uniformity. We discuss why these requirements have arisen and what might be done about them.Comment: 6 pages, to appear in the proceedings of the AO4ELT conference, held in Paris, 22-26 June 200

    Future mmVLBI Research with ALMA: A European vision

    Get PDF
    Very long baseline interferometry at millimetre/submillimetre wavelengths (mmVLBI) offers the highest achievable spatial resolution at any wavelength in astronomy. The anticipated inclusion of ALMA as a phased array into a global VLBI network will bring unprecedented sensitivity and a transformational leap in capabilities for mmVLBI. Building on years of pioneering efforts in the US and Europe the ongoing ALMA Phasing Project (APP), a US-led international collaboration with MPIfR-led European contributions, is expected to deliver a beamformer and VLBI capability to ALMA by the end of 2014 (APP: Fish et al. 2013, arXiv:1309.3519). This report focuses on the future use of mmVLBI by the international users community from a European viewpoint. Firstly, it highlights the intense science interest in Europe in future mmVLBI observations as compiled from the responses to a general call to the European community for future research projects. A wide range of research is presented that includes, amongst others: - Imaging the event horizon of the black hole at the centre of the Galaxy - Testing the theory of General Relativity an/or searching for alternative theories - Studying the origin of AGN jets and jet formation - Cosmological evolution of galaxies and BHs, AGN feedback - Masers in the Milky Way (in stars and star-forming regions) - Extragalactic emission lines and astro-chemistry - Redshifted absorption lines in distant galaxies and study of the ISM and circumnuclear gas - Pulsars, neutron stars, X-ray binaries - Testing cosmology - Testing fundamental physical constantsComment: Replaced figures 2 and 3: corrected position SRT. Corrected minor typo in 5.
    corecore