145 research outputs found
Avian Pathogenic Escherichia coli (APEC) Infection Alters Bone Marrow Transcriptome in Chickens
Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection
Alignment of the ALICE Inner Tracking System with cosmic-ray tracks
37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe
First measurement of the |t|-dependence of coherent J/ψ photonuclear production
The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3.
The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio
Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere
It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer
Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC
We present the first measurement of the two-particle transverse momentum differential correlation function, P2≡ ΔpTΔpT/ pT2, in Pb-Pb collisions at sNN=2.76 TeV. Results for P2 are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δφ dependence is found to be largely independent of Δη for |Δη|≥0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P2, studied as a function of the collision centrality, show that correlations at |Δη|≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system
K*(892)(0) and phi(1020)meson production at high transverse momentum in pp and Pb-Pb collisions at root sNN=2.76 TeV
The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions
at √sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the
ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been measured
for K∗(892)0 and φ(1020) mesons via their hadronic decay channels for pT up to 20 GeV/c. The measurements
in pp collisions have been compared to model calculations and used to determine the nuclear modification factor
and particle ratios. The K∗(892)0/K ratio exhibits significant reduction from pp to central Pb-Pb collisions,
consistent with the suppression of the K∗(892)0 yield at low pT due to rescattering of its decay products in
the hadronic phase. In central Pb-Pb collisions the pT dependent φ(1020)/π and K∗(892)0/π ratios show an
enhancement over pp collisions for pT ≈ 3 GeV/c, consistent with previous observations of strong radial flow.
At high pT, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb
collisions, the production of K∗(892)0 and φ(1020) mesons is suppressed for pT > 8 GeV/c. This suppression is
similar to that of charged pions, kaons, and protons, indicating that the suppression does not depend on particle
mass or flavor in the light quark sector
J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV
We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity
A(c)(+) Production and Baryon-to-Meson Ratios in pp and p-Pb Collisions at root S-NN=5.02 TeV at the LHC
The prompt production of the charm baryon \u39bc+ and the \u39bc+/D0 production ratios were measured at midrapidity with the ALICE detector in pp and p-Pb collisions at sNN=5.02 TeV. These new measurements show a clear decrease of the \u39bc+/D0 ratio with increasing transverse momentum (pT) in both collision systems in the range 2<12 GeV/c, exhibiting similarities with the light-flavor baryon-to-meson ratios p/\u3c0 and \u39b/KS0. At low pT, predictions that include additional color-reconnection mechanisms beyond the leading-color approximation, assume the existence of additional higher-mass charm-baryon states, or include hadronization via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e+e- and e-p collisions significantly underestimate the data. The results presented in this Letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies
First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC
This letter presents the first measurement of jet mass in Pb–Pb and p–Pb collisions at sNN=2.76 TeV and sNN=5.02 TeV, respectively. Both the jet energy and the jet mass are expected to be sensitive to jet quenching in the hot Quantum Chromodynamics (QCD) matter created in nuclear collisions at collider energies. Jets are reconstructed from charged particles using the anti-kT jet algorithm and resolution parameter R=0.4. The jets are measured in the pseudorapidity range |ηjet|<0.5 and in three intervals of transverse momentum between 60 GeV/c and 120 GeV/c. The measurement of the jet mass in central Pb–Pb collisions is compared to the jet mass as measured in p–Pb reference collisions, to vacuum event generators, and to models including jet quenching. It is observed that the jet mass in central Pb–Pb collisions is consistent within uncertainties with p–Pb reference measurements. Furthermore, the measured jet mass in Pb–Pb collisions is not reproduced by the quenching models considered in this letter and is found to be consistent with PYTHIA expectations within systematic uncertainties
- …