725 research outputs found

    A peptide mimic of the chemotaxis inhibitory protein of Staphylococcus aureus: towards the development of novel anti-inflammatory compounds

    Get PDF
    Complement factor C5a is one of the most powerful pro-inflammatory agents involved in recruitment of leukocytes, activation of phagocytes and other inflammatory responses. C5a triggers inflammatory responses by binding to its G-protein-coupled C5a-receptor (C5aR). Excessive or erroneous activation of the C5aR has been implicated in numerous inflammatory diseases. The C5aR is therefore a key target in the development of specific anti-inflammatory compounds. A very potent natural inhibitor of the C5aR is the 121-residue chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS). Although CHIPS effectively blocks C5aR activation by binding tightly to its extra-cellular N terminus, it is not suitable as a potential anti-inflammatory drug due to its immunogenic properties. As a first step in the development of an improved CHIPS mimic, we designed and synthesized a substantially shorter 50-residue adapted peptide, designated CHOPS. This peptide included all residues important for receptor binding as based on the recent structure of CHIPS in complex with the C5aR N terminus. Using isothermal titration calorimetry we demonstrate that CHOPS has micromolar affinity for a model peptide comprising residues 7–28 of the C5aR N terminus including two O-sulfated tyrosine residues at positions 11 and 14. CD and NMR spectroscopy showed that CHOPS is unstructured free in solution. Upon addition of the doubly sulfated model peptide, however, the NMR and CD spectra reveal the formation of structural elements in CHOPS reminiscent of native CHIPS

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Genome-wide association reveals three SNPs associated with sporadic amyotrophic lateral sclerosis through a two-locus analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyotrophic lateral sclerosis (ALS) is a fatal, degenerative neuromuscular disease characterized by a progressive loss of voluntary motor activity. About 95% of ALS patients are in "sporadic form"-meaning their disease is not associated with a family history of the disease. To date, the genetic factors of the sporadic form of ALS are poorly understood.</p> <p>Methods</p> <p>We proposed a two-stage approach based on seventeen biological plausible models to search for two-locus combinations that have significant joint effects to the disease in a genome-wide association study (GWAS). We used a two-stage strategy to reduce the computational burden associated with performing an exhaustive two-locus search across the genome. In the first stage, all SNPs were screened using a single-marker test. In the second stage, all pairs made from the 1000 SNPs with the lowest p-values from the first stage were evaluated under each of the 17 two-locus models.</p> <p>Results</p> <p>we performed the two-stage approach on a GWAS data set of sporadic ALS from the SNP Database at the NINDS Human Genetics Resource Center DNA and Cell Line Repository <url>http://ccr.coriell.org/ninds/</url>. Our two-locus analysis showed that two two-locus combinations--rs4363506 (SNP1) and rs3733242 (SNP2), and rs4363506 and rs16984239 (SNP3) -- were significantly associated with sporadic ALS. After adjusting for multiple tests and multiple models, the combination of SNP1 and SNP2 had a p-value of 0.032 under the Dom∩Dom epistatic model; SNP1 and SNP3 had a p-value of 0.042 under the Dom × Dom multiplicative model.</p> <p>Conclusion</p> <p>The proposed two-stage analytical method can be used to search for joint effects of genes in GWAS. The two-stage strategy decreased the computational time and the multiple testing burdens associated with GWAS. We have also observed that the loci identified by our two-stage strategy can not be detected by single-locus tests.</p

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The Origins of Concentric Demyelination: Self-Organization in the Human Brain

    Get PDF
    Baló's concentric sclerosis is a rare atypical form of multiple sclerosis characterized by striking concentric demyelination patterns. We propose a robust mathematical model for Baló's sclerosis, sharing common molecular and cellular mechanisms with multiple sclerosis. A reconsideration of the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon led us to propose a chemotactic cellular model for this disease. Rings of demyelination appear as a result of self-organization processes, and closely mimic Baló lesions. According to our results, homogeneous and concentric demyelinations may be two different macroscopic outcomes of a single fundamental immune disorder. Furthermore, in chemotactic models, cellular aggressivity appears to play a central role in pattern formation

    Design and Organization of the Dexamethasone, Light Anesthesia and Tight Glucose Control (DeLiT) Trial: a factorial trial evaluating the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The perioperative period is characterized by an intense inflammatory response. Perioperative inflammation promotes postoperative morbidity and increases mortality. Blunting the inflammatory response to surgical trauma might thus improve perioperative outcomes. We are studying three interventions that potentially modulate perioperative inflammation: corticosteroids, tight glucose control, and light anesthesia.</p> <p>Methods/Design</p> <p>The DeLiT Trial is a factorial randomized single-center trial of dexamethasone vs placebo, intraoperative tight vs. conventional glucose control, and light vs deep anesthesia in patients undergoing major non-cardiac surgery. Anesthetic depth will be estimated with Bispectral Index (BIS) monitoring (Aspect medical, Newton, MA). The primary outcome is a composite of major postoperative morbidity including myocardial infarction, stroke, sepsis, and 30-day mortality. C-reactive protein, a measure of the inflammatory response, will be evaluated as a secondary outcome. One-year all-cause mortality as well as post-operative delirium will be additional secondary outcomes. We will enroll up to 970 patients which will provide 90% power to detect a 40% reduction in the primary outcome, including interim analyses for efficacy and futility at 25%, 50% and 75% enrollment.</p> <p>Discussion</p> <p>The DeLiT trial started in February 2007. We expect to reach our second interim analysis point in 2010. This large randomized controlled trial will provide a reliable assessment of the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery. The factorial design will enable us to simultaneously study the effects of the three interventions in the same population, both individually and in different combinations. Such a design is an economically efficient way to study the three interventions in one clinical trial vs three.</p> <p>Trial registration</p> <p><b>This trial is registered at </b>Clinicaltrials.gov <b>#</b>: NTC00433251</p

    A Recombinant Vaccine Effectively Induces C5a-Specific Neutralizing Antibodies and Prevents Arthritis

    Get PDF
    OBJECTIVES: To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a. METHODS: We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology. RESULTS: Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered. CONCLUSIONS: Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity

    Epithelial maturation and molecular biology of oral HPV

    Get PDF
    Human papillomavirus (HPV) is widespread and can cause latent infection in basal cells, with low HPV DNA copy-number insufficient for transmission of infection; can cause subclinical infection that is active but without clinical signs; or can cause clinical infection leading to benign, potentially malignant or malignant lesions. The HPV cycle is influenced by the stage of maturation of the infected keratinocytes, and the production of virions is restricted to the post-mitotic suprabasal epithelial cells where all the virus genes are expressed
    corecore