31 research outputs found

    The Northern Cross Fast Radio Burst project -- III. The FRB-magnetar connection in a sample of nearby galaxies

    Full text link
    Fast radio bursts (FRBs) are millisecond radio transients observed at cosmological distances. The nature of their progenitors is still a matter of debate, although magnetars are invoked by most models. The proposed FRB-magnetar connection was strengthened by the discovery of an FRB-like event from the Galactic magnetar SGR J1935+2154. In this work, we aim to investigate how prevalent magnetars such as SGR J1935+2154 are within FRB progenitors. We carried out an FRB search in a sample of seven nearby (< 12 Mpc) galaxies with the Northern Cross radio telescope for a total of 692 h. We detected one 1.8 ms burst in the direction of M101 with a fluence of 58±558 \pm 5 Jy ms. Its dispersion measure of 303 pc cm3^{-3} places it most-likely beyond M101. Considering that no significant detection comes indisputably from the selected galaxies, we place a 38 yr1^{-1} upper limit on the total burst rate (i.e. including the whole sample) at the 95\% confidence level. This upper limit constrains the event rate per magnetar λmag<0.42\lambda_{\rm mag} < 0.42 magnetar1^{-1} yr1^{-1} or, if combined with literature observations of a similar sample of nearby galaxies, it yields a joint constraint of λmag<0.25\lambda_{\rm mag} < 0.25 magnetar1^{-1} yr1^{-1}. We also provide the first constraints on the expected rate of FRBs hypothetically originating from ultraluminous X-ray (ULX) sources, since some of the galaxies observed during our observational campaign host confirmed ULXs. We obtain <13< 13 yr1^{-1} per ULX for the total sample of galaxies observed. Our results indicate that bursts with energies E>1034E>10^{34} erg from magnetars like SGR J1935+2154 appear more rarely compared to previous observations and further disfavour them as unique progenitors for the cosmological FRB population, leaving more space open to the contribution from a population of more exotic magnetars, not born via core-collapsed supernovae.Comment: 9 pages, 4 figures, published in A&

    AGILE Observations of the LIGO-Virgo Gravitational-wave Events of the GWTC-1 Catalog

    Get PDF
    We present a comprehensive review of AGILE follow-up observations of the Gravitational Wave (GW) events and the unconfirmed marginal triggers reported in the first LIGO-Virgo (LV) Gravitational Wave Transient Catalog (GWTC-1). For seven GW events and 13 LV triggers, the associated 90% credible region was partially or fully accessible to the AGILE satellite at the T 0; for the remaining events, the localization region was not accessible to AGILE due to passages into the South Atlantic Anomaly, or complete Earth occultations (as in the case of GW170817). A systematic search for associated transients, performed on different timescales and on different time intervals about each event, led to the detection of no gamma-ray counterparts. We report AGILE MCAL upper limit fluences in the 400 keV-100 MeV energy range, evaluated in a time window of T 0 ± 50 s around each event, as well as AGILE GRID upper limit (UL) fluxes in the 30 MeV-50 GeV energy range, evaluated in a time frame of T 0 ± 950 s around each event. All ULs are estimated at different integration times and are evaluated within the portions of GW credible region accessible to AGILE at the different times under consideration. We also discuss the possibility of AGILE MCAL to trigger and detect a weak soft-spectrum burst such as GRB 170817A

    An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts

    Get PDF
    Fast radio bursts (FRBs) are millisecond radio pulses originating from powerful enigmatic sources at extragalactic distances. Neutron stars with large magnetic fields (magnetars) have been considered as the sources powering the FRBs, but the connection requires further substantiation. Here we report the detection by the AGILE satellite on 28 April 2020 of an X-ray burst in temporal coincidence with a bright FRB-like radio burst from the Galactic magnetar SGR 1935+2154. The burst observed in the hard X-ray band (18-60 keV) lasted about 0.5 s, it is spectrally cut off above 80 keV and implies an isotropically emitted energy of about 1040 erg. This event demonstrates that a magnetar can produce X-ray bursts in coincidence with FRB-like radio bursts. It also suggests that FRBs associated with magnetars can emit X-ray bursts. We discuss SGR 1935+2154 in the context of FRBs with low-intermediate radio energies in the range 1038-1040 erg. Magnetars with magnetic fields B ≈ 1015 G may power these FRBs, and new data on the search for X-ray emission from FRBs are presented. We constrain the bursting X-ray energy of the nearby FRB 180916 to be less than 1046 erg, smaller than that observed in giant flares from Galactic magnetars

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector

    Get PDF
    The quantum radiation pressure and the quantum shot noise in laser-interferometric gravitational wave detectors constitute a macroscopic manifestation of the Heisenberg inequality. If quantum shot noise can be easily observed, the observation of quantum radiation pressure noise has been elusive, so far, due to the technical noise competing with quantum effects. Here, we discuss the evidence of quantum radiation pressure noise in the Advanced Virgo gravitational wave detector. In our experiment, we inject squeezed vacuum states of light into the interferometer in order to manipulate the quantum backaction on the 42 kg mirrors and observe the corresponding quantum noise driven displacement at frequencies between 30 and 70 Hz. The experimental data, obtained in various interferometer configurations, is tested against the Advanced Virgo detector quantum noise model which confirmed the measured magnitude of quantum radiation pressure noise

    The population of merging compact binaries inferred using gravitational waves through GWTC-3

    Get PDF
    We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and 1700 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} and the NSBH merger rate to be between 7.8 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 140 Gpc3yr1\rm{Gpc^{-3} yr^{-1}} , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} and 44 Gpc3yr1\rm{Gpc^{-3}\, yr^{-1}} at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from 1.20.2+0.1M1.2^{+0.1}_{-0.2} M_\odot to 2.00.3+0.3M2.0^{+0.3}_{-0.3} M_\odot. We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 MM_\odot. We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above 60M\sim 60 M_\odot. The rate of BBH mergers is observed to increase with redshift at a rate proportional to (1+z)κ(1+z)^{\kappa} with κ=2.91.8+1.7\kappa = 2.9^{+1.7}_{-1.8} for z1z\lesssim 1. Observed black hole spins are small, with half of spin magnitudes below χi0.25\chi_i \simeq 0.25. We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
    corecore