90 research outputs found
Geometrical aspects of isoscaling
The property of isoscaling in nuclear fragmentation is studied using a simple
bond percolation model with ``isospin'' added as an extra degree of freedom. It
is shown analytically, first, that isoscaling is expected to exist in such a
simple model with the only assumption of fair sampling with homogeneous
probabilities. Second, numerical percolations of hundreds of thousands of grids
of different sizes and with different to ratios confirm this prediction
with remarkable agreement. It is thus concluded that isoscaling emerges from
the simple assumption of fair sampling with homogeneous probabilities, a
requirement which, if put in the nomenclature of the minimum information
theory, translates simply into the existence of equiprobable configurations in
maximum entropy states
Comparative Study of full QCD Hadron Spectrum and Static Quark Potential with Improved Actions
We investigate effects of action improvement on the light hadron spectrum and
the static quark potential in two-flavor QCD for GeV and
. We compare a renormalization group improved action with
the plaquette action for gluons, and the SW-clover action with the Wilson
action for quarks. We find a significant improvement in the hadron spectrum by
improving the quark action, while the gluon improvement is crucial for a
rotationally invariant static potential. We also explore the region of light
quark masses corresponding to on a 2.7 fm lattice using
the improved gauge and quark action. A flattening of the potential is not
observed up to 2 fm.Comment: LaTeX, 35 pages, 22 eps figures, uses revtex and eps
Feeding strategies and energy to protein ratio on tambaqui performance and physiology
The objective of this work was to evaluate the effect of feed deprivation and refeeding with diets containing different energy to protein ratios (E/P) on the performance and physiology of juvenile tambaqui (Colossoma macropomum). A 4x2 factorial arrangement with three replicates was used, with four E/P ratios (11.5, 10.5, 9.5, and 8.5 kcal g-1 digestible energy per protein) and two feeding regimens (with and without deprivation), during 60 days. Fish from the food-deprived group were fasted for 14 days and refed from the fifteenth to the sixtieth day, whereas the remaining fish were fed for 60 days. At the end of the experimental period, weight of fish subjected to food deprivation was lower than that of those continuously fed; however, this condition did not influence the physiological parameters analyzed. Tambaqui fed 11.5 kcal g-1 achieved lower final weight than those fed with the other diets, in both regimens. Among the physiological parameters, only plasma protein presented significant increase in fish fed 8.5 kcal g-1, in both feeding regimens, probably due to the higher dietary protein concentration. These results indicate that fish show a partial compensatory growth, and that 10.5 kcal g-1 can be recommended for the diet of juvenile tambaqui
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Constraints on cosmological models from strong gravitational lensing systems
Strong lensing has developed into an important astrophysical tool for probing
both cosmology and galaxies (their structure, formation, and evolution). Using
the gravitational lensing theory and cluster mass distribution model, we try to
collect a relatively complete observational data concerning the Hubble constant
independent ratio between two angular diameter distances from
various large systematic gravitational lens surveys and lensing by galaxy
clusters combined with X-ray observations, and check the possibility to use it
in the future as complementary to other cosmological probes. On one hand,
strongly gravitationally lensed quasar-galaxy systems create such a new
opportunity by combining stellar kinematics (central velocity dispersion
measurements) with lensing geometry (Einstein radius determination from
position of images). We apply such a method to a combined gravitational lens
data set including 70 data points from Sloan Lens ACS (SLACS) and Lens
Structure and Dynamics survey (LSD). On the other hand, a new sample of 10
lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully
selected from strong gravitational lensing systems with both X-ray satellite
observations and optical giant luminous arcs, is also used to constrain three
dark energy models (CDM, constant and CPL) under a flat universe
assumption. For the full sample () and the restricted sample ()
including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively
good fitting values of basic cosmological parameters, which generally agree
with the results already known in the literature. This results encourages
further development of this method and its use on larger samples obtained in
the future.Comment: 22 pages, 5 figures, 2 tables; accepted by JCA
The Earth: Plasma Sources, Losses, and Transport Processes
This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed
Saturation of azimuthal anisotropy in Au + Au collisions at sqrt(s_NN) = 62 - 200 GeV
New measurements are presented for charged hadron azimuthal correlations at
mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are
compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb
collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with
centrality and transverse momentum (p_T) dependence characteristic of elliptic
flow (v_2). For a broad range of centralities, the observed magnitudes and
trends of the differential anisotropy, v_2(p_T), change very little over the
collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the
excitation function for v_2 at these energies. Such a saturation may be
indicative of the dominance of a very soft equation of state for sqrt(s_NN) =
62-200 GeV.Comment: 432 authors, 7 pages text, 4 figures, REVTeX4. To be submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
- …