57 research outputs found

    The Electron Temperature Gradient in the Galactic Disk

    Get PDF
    We derive the electron temperature gradient in the Galactic disk using a sample of HII regions that spans Galactocentric distances 0--17 kpc. The electron temperature was calculated using high precision radio recombination line and continuum observations for more than 100 HII regions. Nebular Galactocentric distances were calculated in a consistent manner using the radial velocities measured by our radio recombination line survey. The large number of nebulae widely distributed over the Galactic disk together with the uniformity of our data provide a secure estimate of the present electron temperature gradient in the Milky Way. Because metals are the main coolants in the photoionized gas, the electron temperature along the Galactic disk should be directly related to the distribution of heavy elements in the Milky Way. Our best estimate of the electron temperature gradient is derived from a sample of 76 sources for which we have the highest quality data. The present gradient in electron temperature has a minimum at the Galactic Center and rises at a rate of 287 +/- 46 K/kpc. There are no significant variations in the value of the gradient as a function of Galactocentric radius or azimuth. The scatter we find in the HII region electron temperatures at a given Galactocentric radius is not due to observational error, but rather to intrinsic fluctuations in these temperatures which are almost certainly due to fluctuations in the nebular heavy element abundances. Comparing the HII region gradient with the much steeper gradient found for planetary nebulae suggests that the electron temperature gradient evolves with time, becoming flatter as a consequence of the chemical evolution of the Milky Way's disk.Comment: 43 pages, 9 figures (accepted for publication in the ApJ

    Ionized gas, molecules, and dust in Sh2-132

    Get PDF
    We analyze the various interstellar components of the HII region Sh2-132. The main stellar source is the double binary system that includes the Wolf-Rayet star WR153ab. We use radio continuum images at 408 and 1420 MHz, and HI 21cm line data taken from the Canadian Galactic Plane Survey, molecular observations of the 12CO(1-0) line at 115 GHz from the Five College Radio Astronomy Observatory, and available mid and far IR observations obtained with the MSX and IRAS satellites, respectively. Sh2-132 is composed of two shells showing radio continuum counterparts at both frequencies. The emission is thermal in nature. The estimated rms electron density and ionized mass of the nebula are n_e = 20 cm^{-3} and M_HII = 1500 Mo. The distribution of the CO emission shows molecular gas bordering the ionized nebula and interacting with it. The velocities of the molecular gas is in the range --38 to --53 km/s, similar to the velocity of the ionized gas. The emission at 8.3 mic. reveals a ring like feature of about 15' that encircles the bright optical regions. This emission is due to the PAHs and marks the location of photodissociation regions. The gas distribution in the environs of Sh2-132 can be explained in a scenario where the massive stars in the region photodissociated, ionized, and swept-up the dense molecular material from the parental cloud through their strong stellar winds and intense UV photon flux.Comment: 11 figures and 5 tables, accepted in MNRA

    Galaxy rotation curves: the effect of j x B force

    Full text link
    Using the Galaxy as an example, we study the effect of j x B force on the rotational curves of gas and plasma in galaxies. Acceptable model for the galactic magnetic field and plausible physical parameters are used to fit the flat rotational curve for gas and plasma based on the observed baryonic (visible) matter distribution and j x B force term in the static MHD equation of motion. We also study the effects of varied strength of the magnetic field, its pitch angle and length scale on the rotational curves. We show that j x B force does not play an important role on the plasma dynamics in the intermediate range of distances 6-12 kpc from the centre, whilst the effect is sizable for larger r (r > 15 kpc), where it is the most crucial.Comment: Accepted for publication in Astrophysics & Space Science (final printed version, typos in proofs corrected

    A multifrequency study of the active star forming complex NGC6357. I. Interstellar structures linked to the open cluster Pis24

    Full text link
    We investigate the distribution of the gas (ionized, neutral atomic and molecular), and interstellar dust in the complex star forming region NGC6357 with the goal of studying the interplay between the massive stars in the open cluster Pis24 and the surrounding interstellar matter. Our study of the distribution of the ionized gas is based on narrow-band Hhalfa, [SII], and [OIII] images obtained with the Curtis-Schmidt Camera at CTIO, Chile, and on radio continuum observations at 1465 MHz taken with the VLA with a synthesized beam of 40 arcsec. The distribution of the molecular gas is analyzed using 12CO(1-0) data obtained with the Nanten radiotelescope, Chile (angular resolution = 2.7 arcmin). The interstellar dust distribution was studied using mid-infrared data from the GLIMPSE survey and far-infrared observations from IRAS. NGC6357 consists of a large ionized shell and a number of smaller optical nebulosities. The optical, radio continuum, and near- and mid-IR images delineate the distributions of the ionized gas and interstellar dust in the HII regions and in previously unknown wind blown bubbles linked to the massive stars in Pis24 revealing surrounding photodissociation regions. The CO line observations allowed us to identify the molecular counterparts of the ionized structures in the complex and to confirm the presence of photodissociation regions. The action of the WR star HD157504 on the surrounding gas was also investigated. The molecular mass in the complex is estimated to be (4+/-2)X10^5 Mo. Mean electron densities derived from the radio data suggest electron densities > 200 cm^-3, indicating that NGC6357 is a complex formed in a region of high ambient density. The known massive stars in Pis24 and a number of newly inferred massive stars are mainly responsible for the excitation and photodissociation of the parental molecular cloud.Comment: 16 pages, 9 figures. Accepted for publication in MNRA

    The ionization mechanism of NGC 185: how to fake a Seyfert galaxy?

    Full text link
    NGC 185 is a dwarf spheroidal satellite of the Andromeda galaxy. From mid-1990s onwards it was revealed that dwarf spheroidals often display a varied and in some cases complex star formation history. In an optical survey of bright nearby galaxies, NGC 185 was classified as a Seyfert galaxy based on its emission line ratios. However, although the emission lines in this object formally place it in the category of Seyferts, it is probable that this galaxy does not contain a genuine active nucleus. NGC 185 was not detected in radio surveys either in 6 or 20 cm, or X-ray observations, which means that the Seyfert-like line ratios may be produced by stellar processes. In this work, we try to identify the possible ionization mechanisms for this galaxy. We discussed the possibility of the line emissions being produced by planetary nebulae (PNe), using deep spectroscopy observations obtained with GMOS-N, at Gemini. Although the fluxes of the PNe are high enough to explain the integrated spectrum, the line ratios are very far from the values for the Seyfert classification. We then proposed that a mixture of supernova remnants and PNe could be the source of the ionization, and we show that a composition of these two objects do mimic Seyfert-like line ratios. We used chemical evolution models to predict the supernova rates and to support the idea that these supernova remnants should be present in the galaxy.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    GS100-02-41: a new large HI shell in the outer part of the Galaxy

    Get PDF
    Massive stars have a profound effect on the surrounding interstellar medium. They ionize and heat the neutral gas, and due to their strong winds, they swept the gas up forming large HI shells. In this way, they generate a dense shell where the physical conditions for the formation of new stars are given. The aim of this study is to analyze the origin and evolution of the large HI shell GS100-02-41 and its role in triggering star forming processes.To characterize the shell and its environs, we carry out a multi-wavelength study. We analyze he HI 21 cm line, the radio continuum, and infrared emission distributions. The analysis of the HI data shows an expanding shell structure centred at (l, b) = (100.6 deg, -2.04 deg) in the velocity range from -29 to -51.7 km/s. We infer for GS100-02-41, a kinematical distance of 2.8 +/- 0.6 kpc. Several massive stars belonging to Cep OB1 are located in projection within the large HI, shell boundaries. The analysis of the radio continuum and infrared data reveal that there is no continuum counterpart of the HI shell. On the other hand, three slightly extended radio continuum sources are observed in projection onto the dense HI shell. From their flux density determinations we infer that they are thermal in nature. An analysis of the HI emission distribution in the environs of these sources shows, for each of them, a region of low emissivity having a good morphological correlation with the ionized gas in a velocity range similar to the one where GS100-02-41 is detected. The origin of GS100-02-41 could have been mainly due to the action of the Cep OB1 massive stars located inside the HI shell. The obtained age difference between the HI shell and the HII regions, together with their relative location, led us to conclude that the ionizing stars could have been created as a consequence of the shell evolution.Comment: Accepted for publication in A&

    Extreme infrared variables from UKIDSS-I. A concentration in star-forming regions

    Get PDF
    We present initial results of the first panoramic search for high-amplitude near-infrared variability in theGalactic plane.We analyse the widely separated two-epoch K-band photometry in the fifth and seventh data releases of the UKIDSS Galactic plane survey.We find 45 stars with δK > 1 mag, including two previously known OH/IR stars and a Nova. Even though the midplane is not yet included in the data set, we find the majority (66 per cent) of our sample to be within known star-forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (12 stars). Sources in SFRs show spectral energy distributions that support classification as young stellar objects (YSOs). This indicates that YSOs dominate the Galactic population of high-amplitude infrared variable stars at low luminosities and therefore likely dominate the total high-amplitude population. Spectroscopic follow up of the DR5 sample shows at least four stars with clear characteristics of eruptive premain- sequence variables, two of which are deeply embedded. Our results support the recent concept of eruptive variability comprising a continuum of outburst events with different timescales and luminosities, but triggered by a similar physical mechanism involving unsteady accretion. Also, we find what appears to be one of the most variable classical Be stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

    Low-ionization pairs of knots in planetary nebulae: physical properties and excitation

    Full text link
    We obtained optical long-slit spectra of four planetary nebulae (PNe) with low-ionization pair of knots, namely He 1-1, IC 2149, KjPn 8 and NGC 7662. These data allow us to derive the physical parameters and excitation of the pairs of knots, and those of higher ionization inner components of the nebulae, separately. Our results are as follows. 1) The electron temperatures of the knots are within the range 9500 to 14500 K, similar to the temperatures of the higher ionization rims/shells. 2) Typical knots' densities are 500 to 2000 cm^{-3}. 3) Empirical densities of the inner rims/shells are higher than those of the pairs of knots, by up to a factor of 10. Theoretical predictions, at variance with the empirical results, suggest that knots should be denser than the inner regions, by at least a factor of 10. 4) Empirical and theoretical density contrasts can be reconciled if we assume that at least 90% of the knots' gas is neutral (likely composed of dust and molecules). 5) By using Raga et al. (2008) shock modeling and diagnostic diagrams appropriated for spatially resolved PNe, we suggest that high-velocity shocked knots traveling in the photoionized outer regions of PNe can explain the emission of the pairs of knots analysed in this paper.Comment: The paper contains 11 pages (6 figures and 5 tables). Accepted for publication in MNRAS; added last paragraph for subsection 7.

    NGC 3503 and its molecular environment

    Get PDF
    We present a study of the molecular gas and interstellar dust distribution in the environs of the HII region NGC 3503 associated with the open cluster Pis 17 with the aim of investigating the spatial distribution of the molecular gas linked to the nebula and achieving a better understanding of the interaction of the nebula and Pis 17 with their molecular environment. We based our study in ^{12}CO(1-0) observations of a region of ~0.6 deg. in size obtained with the 4-m NANTEN telescope, unpublished radio continuum data at 4800 and 8640 MHz obtained with the ATCA telescope, radio continuum data at 843 MHz obtained from SUMSS, and available IRAS, MSX, IRAC-GLIMPSE, and MIPSGAL images. We found a molecular cloud (Component 1) having a mean velocity of -24.7 km s^{-1}, compatible with the velocity of the ionized gas, which is associated with the nebula and its surroundings. Adopting a distance of 2.9 +/- 0.4 kpc the total molecular mass and density yield (7.6 +/- 2.1) x 10^3 Msun and 400 +/- 240 cm^{-3}, respectively. The radio continuum data confirm the existence of an electron density gradient in NGC 3503. The IR emission shows the presence of a PDR bordering the higher density regions of the nebula. The spatial distribution of the CO emission shows that the nebula coincides with a molecular clump, with the strongest CO emission peak located close to the higher electron density region. The more negative velocities of the molecular gas (about -27 km s^{-1}), is coincident with NGC 3503. Candidate YSOs were detected towards the HII region, suggesting that embedded star formation may be occurring in the neighbourhood of the nebula. The presence of a clear electron density gradient, along with the spatial distribution of the molecular gas and PAHs in the region indicates that NGC 3503 is a blister-type HII region that probably has undergone a champagne phase

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission

    Get PDF
    We present a new estimate of foreground emission in the WMAP data, using a Markov chain Monte Carlo (MCMC) method. The new technique delivers maps of each foreground component for a variety of foreground models, error estimates of the uncertainty of each foreground component, and provides an overall goodness-of-fit measurement. The resulting foreground maps are in broad agreement with those from previous techniques used both within the collaboration and by other authors. We find that for WMAP data, a simple model with power-law synchrotron, free-free, and thermal dust components fits 90% of the sky with a reduced chi-squared of 1.14. However, the model does not work well inside the Galactic plane. The addition of either synchrotron steepening or a modified spinning dust model improves the fit. This component may account for up to 14% of the total flux at Ka-band (33 GHz). We find no evidence for foreground contamination of the CMB temperature map in the 85% of the sky used for cosmological analysis.Comment: accepted by ApJS, 49 pages, 4 tables, 21 figures. PS and PDF versions with high-resolution figures available at http://lambda.gsfc.nasa.gov/product/map/dr3/map_bibliography.cf
    • …
    corecore