195 research outputs found
Damage tolerance assessment by bend and shear tests of two multilayer composites: Glass fibre reinforced metal laminate and aluminium roll-bonded laminate
The damage tolerance of an aluminium roll-bonded laminate (ALH19) and a
glass fibre reinforced laminate (GLARE) (both based in Al 2024-T3) has been studied.
The composite laminates have been tested under 3-point bend and shear tests on the
interfaces to analyze their fracture behaviour. During the bend tests different fracture
mechanisms were activated for both laminates, which depend on the constituent
materials and their interfaces. The high intrinsic toughness of the pure Al 1050 layers
present in the aluminium roll-bonded laminate (ALH19), together with extrinsic
toughening mechanisms such as crack bridging and interface delamination were
responsible for the enhanced toughness of this composite laminate. On the other hand,
crack deflection by debonding between the glass fibres and the plastic resin in GLARE,
was the main extrinsic toughening mechanism present in this composite laminateFinancial support from CICYT (Project MAT2003-01172) is gratefully
acknowledged. C.M. Cepeda-Jiménez thanks the Spanish Ministry of Education and
Science for a Juan de la Cierva contract. Authors also thank Delft University of
Technology for providing the GLARE.Peer reviewe
[14] Una aportación para las “escuelas sostenibles” en la década de la educación para el desarrollo sostenible
En el contexto de la Década de la Educación para el Desarrollo sostenible presentamos nuestra aportación a las “Escuelas Sostenibles”. Ésta surge como fruto de la reflexión después de una investigación realizada en torno a una experiencia concreta: “Ecocentros de Extremadura”, con el fin de contribuir al necesario proceso madurativo de las mismas. Con ello estaremos más cerca de lograr hacer una escuela coherente con los retos de la educación ambiental para el siglo XXI.Palabras clave: Escuelas sostenibles; ecoauditorías escolares; investigación en educación ambiental; práctica educativa en la escuela.A contribution to "sustainable schools" in the decade of education for sustainable developmentAs part of the context of the Decade of Education for Sustainable Development, we present our contribution to "Sustainable Schools". It arose as a result of reflection following as study conducted on a specific experience, "The 'Ecocentros' of Extremadura", with the aim of furthering the necessary maturation process of sustainable schools, and bringing us closer to achieving a school that is coherent with the challenges of environmental education for the XXI century.Keywords: Sustainable schools; school environmental audits, environmental education research; educational practice in the school
Microstructure, texture and tensile properties of ultrafine/nano grained magnesium alloy processed by accumulative back extrusion
An AZ31 wrought magnesium alloy was processed by employing multipass accumulative back extrusion process. The obtained microstructure, texture and room temperature tensile properties were characterized and discussed. Ultrafine grained microstructure including nano grains were developed, where the obtained mean grain size was decreased from 8 to 0.5 µm by applying consecutive passes. The frequency of both low angle and high angle boundaries increased after processing. Strength of the experimental alloy was decreased after processing, which was attributed to the obtained texture involving the major component lying inclined to the deformation axis. Both the uniform and post uniform elongations of the processed materials were increased after processing, where a total elongation of 68 pct was obtained after six-pass deformation. The contribution of different twinning and slip mechanism was described by calculating corresponding Schmid factors. The operation of prismatic slip was considered as the major deformation contributor. The significant increase in post uniform deformation of the processed material was discussed relying on the occurrence of grain boundary sliding associated with the operation of prismatic slip.Postprint (author's final draft
A phase I randomized therapeutic MVA-B vaccination improves the magnitude and quality of the T cell immune responses in HIV-1-infected subjects on HAART
Trial Design
Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic
HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly
active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and
undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular
injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens)
or placebo, followed by interruption of HAART.
Methods
The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were
assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination.
Results
MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded
pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude,
broadly directed and showed an enhanced polyfunctionality with a T effector memory
(TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1-
specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T
cell polyfunctional responses to the MVA vector antigens that increase in magnitude after
two and three booster doses
Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run
The first observing run of Advanced LIGO spanned 4 months, from September 12,
2015 to January 19, 2016, during which gravitational waves were directly
detected from two binary black hole systems, namely GW150914 and GW151226.
Confident detection of gravitational waves requires an understanding of
instrumental transients and artifacts that can reduce the sensitivity of a
search. Studies of the quality of the detector data yield insights into the
cause of instrumental artifacts and data quality vetoes specific to a search
are produced to mitigate the effects of problematic data. In this paper, the
systematic removal of noisy data from analysis time is shown to improve the
sensitivity of searches for compact binary coalescences. The output of the
PyCBC pipeline, which is a python-based code package used to search for
gravitational wave signals from compact binary coalescences, is used as a
metric for improvement. GW150914 was a loud enough signal that removing noisy
data did not improve its significance. However, the removal of data with excess
noise decreased the false alarm rate of GW151226 by more than two orders of
magnitude, from 1 in 770 years to less than 1 in 186000 years.Comment: 27 pages, 13 figures, published versio
A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from
isolated neutron stars within the Orion spur towards both the inner and outer
regions of our Galaxy. As gravitational waves interact very weakly with matter,
the search is unimpeded by dust and concentrations of stars. One search disk
(A) is in diameter and centered on
, and the other
(B) is in diameter and centered on
. We explored the
frequency range of 50-1500 Hz and frequency derivative from to Hz/s. A multi-stage, loosely coherent search program allowed probing
more deeply than before in these two regions, while increasing coherence length
with every stage.
Rigorous followup parameters have winnowed initial coincidence set to only 70
candidates, to be examined manually. None of those 70 candidates proved to be
consistent with an isolated gravitational wave emitter, and 95% confidence
level upper limits were placed on continuous-wave strain amplitudes. Near
Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized
strain amplitude of , while at the high end of our
frequency range we achieve a worst-case upper limit of for
all polarizations and sky locations.Comment: Fixed minor typo - duplicate name in the author lis
Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
Searches for continuous gravitational waves from nine young supernova remnants
We describe directed searches for continuous gravitational waves in data from
the sixth LIGO science data run. The targets were nine young supernova remnants
not associated with pulsars; eight of the remnants are associated with
non-pulsing suspected neutron stars. One target's parameters are uncertain
enough to warrant two searches, for a total of ten. Each search covered a broad
band of frequencies and first and second frequency derivatives for a fixed sky
direction. The searches coherently integrated data from the two LIGO
interferometers over time spans from 5.3-25.3 days using the matched-filtering
F-statistic. We found no credible gravitational-wave signals. We set 95%
confidence upper limits as strong (low) as on intrinsic
strain, on fiducial ellipticity, and on
r-mode amplitude. These beat the indirect limits from energy conservation and
are within the range of theoretical predictions for neutron-star ellipticities
and r-mode amplitudes.Comment: Science summary available at
http://www.ligo.org/science/Publication-S6DirectedSNR/index.ph
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10–500 s in a frequency band of 40–1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10−5 and 9.4×10−4 Mpc−3 yr−1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves
- …