17 research outputs found

    Climate change impacts on ocean circulation relevant to the UK and Ireland

    Get PDF
    What is happening • Observations of the Atlantic Meridional Overturning Circulation or Gulf Stream System since the 1980s have shown a strengthening in the 1990s and a weakening in the 2000s, with no clear overall trend. • Shifts in North-east Atlantic circulation, leading to a greater influence of warmer subtropical-origin waters which can impact marine ecosystems and economically important fish species such as mackerel. The changing subpolar ocean circulation is also having impacts on the food supply for deep-sea ecosystems. • The subpolar gyre recorded its freshest values on record in the 2010s. Ongoing freshwater build-up in the rapidly changing Arctic Ocean may exacerbate this freshening. What could happen • Projections from climate models consistently project a weakening of the Atlantic Meridional Overturning Circulation due to anthropogenic climate change. • Warming of Atlantic waters is expected to reduce the depth of mixed layers and limit nutrient supply to surface layers

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Constant-density approximation to Taylor-Maccoll solution

    No full text

    Investigation of surface roughness effects on adiabatic wall temperature

    No full text
    corecore