39 research outputs found

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year : a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0.603 (0.400-1.00) standard drinks per day, and the NDE varied between 0.002 (0-0) and 1.75 (0.698-4.30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0.114 (0-0.403) to 1.87 (0.500-3.30) standard drinks per day and an NDE that ranged between 0.193 (0-0.900) and 6.94 (3.40-8.30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59.1% (54.3-65.4) were aged 15-39 years and 76.9% (73.0-81.3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    A burden of proof study on alcohol consumption and ischemic heart disease

    Get PDF
    Cohort and case-control data have suggested an association between low to moderate alcohol consumption and decreased risk of ischemic heart disease (IHD), yet results from Mendelian randomization (MR) studies designed to reduce bias have shown either no or a harmful association. Here we conducted an updated systematic review and re-evaluated existing cohort, case-control, and MR data using the burden of proof meta-analytical framework. Cohort and case-control data show low to moderate alcohol consumption is associated with decreased IHD risk – specifically, intake is inversely related to IHD and myocardial infarction morbidity in both sexes and IHD mortality in males – while pooled MR data show no association, confirming that self-reported versus genetically predicted alcohol use data yield conflicting findings about the alcohol-IHD relationship. Our results highlight the need to advance MR methodologies and emulate randomized trials using large observational databases to obtain more definitive answers to this critical public health question

    Global, regional, and national sex differences in the global burden of tuberculosis by HIV status, 1990–2019: results from the Global Burden of Disease Study 2019

    Get PDF
    Tuberculosis is a major contributor to the global burden of disease, causing more than a million deaths annually. Given an emphasis on equity in access to diagnosis and treatment of tuberculosis in global health targets, evaluations of differences in tuberculosis burden by sex are crucial. We aimed to assess the levels and trends of the global burden of tuberculosis, with an emphasis on investigating differences in sex by HIV status for 204 countries and territories from 1990 to 2019.publishedVersio

    Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019 : results from the Global Burden of Disease Study 2019

    Get PDF
    Background: The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories. Methods: In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466–469, 470.0, 480–482.8, 483.0–483.9, 484.1–484.2, 484.6–484.7, and 487–489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4–B97.6, J09–J15.8, J16–J16.9, J20–J21.9, J91.0, P23.0–P23.4, and U04–U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23 109 site-years of vital registration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian meta-regression tool, to analyse age–sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and claims and inpatient data. Additionally, we estimated age–sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors. Findings: Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240–275) LRI incident episodes in males and 232 million (217–248) in females. In the same year, LRIs accounted for 1·30 million (95% UI 1·18–1·42) male deaths and 1·20 million (1·07–1·33) female deaths. Age-standardised incidence and mortality rates were 1·17 times (95% UI 1·16–1·18) and 1·31 times (95% UI 1·23–1·41) greater in males than in females in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126·0% [95% UI 121·4–131·1]) and deaths (100·0% [83·4–115·9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest decline was observed for LRI deaths in males younger than 5 years (–70·7% [–77·2 to –61·8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53·0% [95% UI 37·7–61·8] in males and 56·4% [40·7–65·1] in females), and more than a quarter of LRI deaths among those aged 5–14 years were attributable to household air pollution (PAF 26·0% [95% UI 16·6–35·5] for males and PAF 25·8% [16·3–35·4] for females). PAFs of male LRI deaths attributed to smoking were 20·4% (95% UI 15·4–25·2) in those aged 15–49 years, 30·5% (24·1–36·9) in those aged 50–69 years, and 21·9% (16·8–27·3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21·1% (95% UI 14·5–27·9) in those aged 15–49 years and 18·2% (12·5–24·5) in those aged 50–69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11·7% (95% UI 8·2–15·8) of LRI deaths. Interpretation: The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children younger than 5 years was clearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, including promoting well eing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities. Funding: Bill & Melinda Gates Foundation. © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliate “Muhammad Aziz Rahman and Huy Nguyen” is provided in this record*

    a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Publisher Copyright: © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Smoking is the leading behavioural risk factor for mortality globally, accounting for more than 175 million deaths and nearly 4·30 billion years of life lost (YLLs) from 1990 to 2021. The pace of decline in smoking prevalence has slowed in recent years for many countries, and although strategies have recently been proposed to achieve tobacco-free generations, none have been implemented to date. Assessing what could happen if current trends in smoking prevalence persist, and what could happen if additional smoking prevalence reductions occur, is important for communicating the effect of potential smoking policies. Methods: In this analysis, we use the Institute for Health Metrics and Evaluation's Future Health Scenarios platform to forecast the effects of three smoking prevalence scenarios on all-cause and cause-specific YLLs and life expectancy at birth until 2050. YLLs were computed for each scenario using the Global Burden of Disease Study 2021 reference life table and forecasts of cause-specific mortality under each scenario. The reference scenario forecasts what could occur if past smoking prevalence and other risk factor trends continue, the Tobacco Smoking Elimination as of 2023 (Elimination-2023) scenario quantifies the maximum potential future health benefits from assuming zero percent smoking prevalence from 2023 onwards, whereas the Tobacco Smoking Elimination by 2050 (Elimination-2050) scenario provides estimates for countries considering policies to steadily reduce smoking prevalence to 5%. Together, these scenarios underscore the magnitude of health benefits that could be reached by 2050 if countries take decisive action to eliminate smoking. The 95% uncertainty interval (UI) of estimates is based on the 2·5th and 97·5th percentile of draws that were carried through the multistage computational framework. Findings: Global age-standardised smoking prevalence was estimated to be 28·5% (95% UI 27·9–29·1) among males and 5·96% (5·76–6·21) among females in 2022. In the reference scenario, smoking prevalence declined by 25·9% (25·2–26·6) among males, and 30·0% (26·1–32·1) among females from 2022 to 2050. Under this scenario, we forecast a cumulative 29·3 billion (95% UI 26·8–32·4) overall YLLs among males and 22·2 billion (20·1–24·6) YLLs among females over this period. Life expectancy at birth under this scenario would increase from 73·6 years (95% UI 72·8–74·4) in 2022 to 78·3 years (75·9–80·3) in 2050. Under our Elimination-2023 scenario, we forecast 2·04 billion (95% UI 1·90–2·21) fewer cumulative YLLs by 2050 compared with the reference scenario, and life expectancy at birth would increase to 77·6 years (95% UI 75·1–79·6) among males and 81·0 years (78·5–83·1) among females. Under our Elimination-2050 scenario, we forecast 735 million (675–808) and 141 million (131–154) cumulative YLLs would be avoided among males and females, respectively. Life expectancy in 2050 would increase to 77·1 years (95% UI 74·6–79·0) among males and 80·8 years (78·3–82·9) among females. Interpretation: Existing tobacco policies must be maintained if smoking prevalence is to continue to decline as forecast by the reference scenario. In addition, substantial smoking-attributable burden can be avoided by accelerating the pace of smoking elimination. Implementation of new tobacco control policies are crucial in avoiding additional smoking-attributable burden in the coming decades and to ensure that the gains won over the past three decades are not lost. Funding: Bloomberg Philanthropies and the Bill & Melinda Gates Foundation.publishersversionpublishe

    Global, regional, and national mortality due to unintentional carbon monoxide poisoning, 2000–2021: results from the Global Burden of Disease Study 2021

    Get PDF
    Background Unintentional carbon monoxide poisoning is a largely preventable cause of death that has received insufficient attention. We aimed to conduct a comprehensive global analysis of the demographic, temporal, and geographical patterns of fatal unintentional carbon monoxide poisoning from 2000 to 2021. Methods As part of the latest Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), unintentional carbon monoxide poisoning mortality was quantified using the GBD cause of death ensemble modelling strategy. Vital registration data and covariates with an epidemiological link to unintentional carbon monoxide poisoning informed the estimates of death counts and mortality rates for all locations, sexes, ages, and years included in the GBD. Years of life lost (YLLs) were estimated by multiplying deaths by remaining standard life expectancy at age of death. Population attributable fractions (PAFs) for unintentional carbon monoxide poisoning deaths due to occupational injuries and high alcohol use were estimated. Findings In 2021, the global mortality rate due to unintentional carbon monoxide poisoning was 0·366 per 100 000 (95% uncertainty interval 0·276–0·415), with 28 900 deaths (21 700–32 800) and 1·18 million YLLs (0·886–1·35) across all ages. Nearly 70% of deaths occurred in males (20 100 [15 800–24 000]), and the 50–54-year age group had the largest number of deaths (2210 [1660–2590]). The highest mortality rate was in those aged 85 years or older with 1·96 deaths (1·38–2·32) per 100 000. Eastern Europe had the highest age-standardised mortality rate at 2·12 deaths (1·98–2·30) per 100 000. Globally, there was a 53·5% (46·2–63·7) decrease in the age-standardised mortality rate from 2000 to 2021, although this decline was not uniform across regions. The overall PAFs for occupational injuries and high alcohol use were 13·6% (11·9–16·0) and 3·5% (1·4–6·2), respectively. Interpretation Improvements in unintentional carbon monoxide poisoning mortality rates have been inconsistent across regions and over time since 2000. Given that unintentional carbon monoxide poisoning is almost entirely preventable, policy-level interventions that lower the risk of carbon monoxide poisoning events should be prioritised, such as those that increase access to improved heating and cooking devices, reduce carbon monoxide emissions from generators, and mandate use of carbon monoxide alarms.publishedVersio

    Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990-2019 : results from the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories. METHODS: In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466-469, 470.0, 480-482.8, 483.0-483.9, 484.1-484.2, 484.6-484.7, and 487-489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4-B97.6, J09-J15.8, J16-J16.9, J20-J21.9, J91.0, P23.0-P23.4, and U04-U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23 109 site-years of vital registration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian meta-regression tool, to analyse age-sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and claims and inpatient data. Additionally, we estimated age-sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors. FINDINGS: Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240-275) LRI incident episodes in males and 232 million (217-248) in females. In the same year, LRIs accounted for 1·30 million (95% UI 1·18-1·42) male deaths and 1·20 million (1·07-1·33) female deaths. Age-standardised incidence and mortality rates were 1·17 times (95% UI 1·16-1·18) and 1·31 times (95% UI 1·23-1·41) greater in males than in females in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126·0% [95% UI 121·4-131·1]) and deaths (100·0% [83·4-115·9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest decline was observed for LRI deaths in males younger than 5 years (-70·7% [-77·2 to -61·8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53·0% [95% UI 37·7-61·8] in males and 56·4% [40·7-65·1] in females), and more than a quarter of LRI deaths among those aged 5-14 years were attributable to household air pollution (PAF 26·0% [95% UI 16·6-35·5] for males and PAF 25·8% [16·3-35·4] for females). PAFs of male LRI deaths attributed to smoking were 20·4% (95% UI 15·4-25·2) in those aged 15-49 years, 30·5% (24·1-36·9) in those aged 50-69 years, and 21·9% (16·8-27·3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21·1% (95% UI 14·5-27·9) in those aged 15-49 years and 18·2% (12·5-24·5) in those aged 50-69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11·7% (95% UI 8·2-15·8) of LRI deaths. INTERPRETATION: The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children younger than 5 years was clearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, including promoting wellbeing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities. FUNDING: Bill & Melinda Gates Foundation

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background: The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods: For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings: The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation: There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding: Bill & Melinda Gates Foundation

    Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Regularly updated data on stroke and its pathological types, including data on their incidence, prevalence, mortality, disability, risk factors, and epidemiological trends, are important for evidence-based stroke care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) aims to provide a standardised and comprehensive measurement of these metrics at global, regional, and national levels. Methods We applied GBD 2019 analytical tools to calculate stroke incidence, prevalence, mortality, disability-adjusted life-years (DALYs), and the population attributable fraction (PAF) of DALYs (with corresponding 95% uncertainty intervals [UIs]) associated with 19 risk factors, for 204 countries and territories from 1990 to 2019. These estimates were provided for ischaemic stroke, intracerebral haemorrhage, subarachnoid haemorrhage, and all strokes combined, and stratified by sex, age group, and World Bank country income level. Findings In 2019, there were 12·2 million (95% UI 11·0–13·6) incident cases of stroke, 101 million (93·2–111) prevalent cases of stroke, 143 million (133–153) DALYs due to stroke, and 6·55 million (6·00–7·02) deaths from stroke. Globally, stroke remained the second-leading cause of death (11·6% [10·8–12·2] of total deaths) and the third-leading cause of death and disability combined (5·7% [5·1–6·2] of total DALYs) in 2019. From 1990 to 2019, the absolute number of incident strokes increased by 70·0% (67·0–73·0), prevalent strokes increased by 85·0% (83·0–88·0), deaths from stroke increased by 43·0% (31·0–55·0), and DALYs due to stroke increased by 32·0% (22·0–42·0). During the same period, age-standardised rates of stroke incidence decreased by 17·0% (15·0–18·0), mortality decreased by 36·0% (31·0–42·0), prevalence decreased by 6·0% (5·0–7·0), and DALYs decreased by 36·0% (31·0–42·0). However, among people younger than 70 years, prevalence rates increased by 22·0% (21·0–24·0) and incidence rates increased by 15·0% (12·0–18·0). In 2019, the age-standardised stroke-related mortality rate was 3·6 (3·5–3·8) times higher in the World Bank low-income group than in the World Bank high-income group, and the age-standardised stroke-related DALY rate was 3·7 (3·5–3·9) times higher in the low-income group than the high-income group. Ischaemic stroke constituted 62·4% of all incident strokes in 2019 (7·63 million [6·57–8·96]), while intracerebral haemorrhage constituted 27·9% (3·41 million [2·97–3·91]) and subarachnoid haemorrhage constituted 9·7% (1·18 million [1·01–1·39]). In 2019, the five leading risk factors for stroke were high systolic blood pressure (contributing to 79·6 million [67·7–90·8] DALYs or 55·5% [48·2–62·0] of total stroke DALYs), high body-mass index (34·9 million [22·3–48·6] DALYs or 24·3% [15·7–33·2]), high fasting plasma glucose (28·9 million [19·8–41·5] DALYs or 20·2% [13·8–29·1]), ambient particulate matter pollution (28·7 million [23·4–33·4] DALYs or 20·1% [16·6–23·0]), and smoking (25·3 million [22·6–28·2] DALYs or 17·6% [16·4–19·0]). Interpretation The annual number of strokes and deaths due to stroke increased substantially from 1990 to 2019, despite substantial reductions in age-standardised rates, particularly among people older than 70 years. The highest age-standardised stroke-related mortality and DALY rates were in the World Bank low-income group. The fastest-growing risk factor for stroke between 1990 and 2019 was high body-mass index. Without urgent implementation of effective primary prevention strategies, the stroke burden will probably continue to grow across the world, particularly in low-income countries.publishedVersio

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
    corecore