196 research outputs found

    A double blind, randomised, placebo-controlled trial to evaluate the efficacy of metformin to treat preterm pre-eclampsia (PI2 Trial): study protocol

    Get PDF
    INTRODUCTION:Pre-eclampsia is a major complication of pregnancy, globally responsible for 60 000 maternal deaths per year, and far more fetal losses. There is no definitive treatment other than delivery. A therapeutic that could quench the disease process would be useful to treat preterm pre-eclampsia, as it could allow these pregnancies to safely continue to a gestation where fetal outcomes are significantly improved. We have published preclinical data to show that metformin, a drug known to be safe in pregnancy and commonly used to treat gestational diabetes, has potent biological effects making it another promising candidate to treat pre-eclampsia. Here, we describe a phase II clinical trial to examine whether administering extended-release metformin may be effective in treating women with preterm pre-eclampsia (PI2 Trial). METHODS:The PI2 Trial is a phase II, double blind, randomised controlled trial that aims to recruit 150 women with preterm pre-eclampsia (gestational age 26+0 to 31+6 weeks) who are being managed expectantly. Participants will be randomised to receive either 3 g of metformin or placebo daily. The primary outcome is time from randomisation until delivery. A delay in delivery of 5 days is assumed to be clinically relevant. The secondary outcomes will be a maternal composite and neonatal composite outcome. All other outcomes will be exploratory. We will record adverse events. ETHICS AND DISSEMINATION:This study has ethical approval (Protocol number M16/09/037 Federal Wide Assurance Number 00001372, Institutional Review Board Number IRB0005239), is registered with the Pan African Clinical Trial Registry (PACTR201608001752102) and the South African Medicine Control Council (20170322). Data will be presented at international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER:PACTR201608001752102; Pre-results.Catherine Cluver, Susan P Walker, Ben W Mol, David Hall, Richard Hiscock, Fiona C Brownfoot, Tu’uhevaha J Kaitu’u-Lino, Stephen Ton

    Risk of pre-eclampsia in women taking metformin: a systematic review and meta-analysis

    Get PDF
    © 2017 Diabetes UK Aims: To perform meta-analyses of studies evaluating the risk of pre-eclampsia in high-risk insulin-resistant women taking metformin prior to, or during pregnancy. Methods: A search was conducted of the Medline, EMBASE, Web of Science and Scopus databases. Both randomized controlled trials and prospective observational cohort studies of metformin treatment vs. placebo/control or insulin either prior to or during pregnancy were selected. The main outcome measure was the incidence of pre-eclampsia in each treatment group. Results: Overall, in five randomized controlled trials comparing metformin treatment (n = 611) with placebo/control (n = 609), no difference in the risk of pre-eclampsia was found [combined/pooled risk ratio (RR), 0.86 (95% CI 0.33–2.26); P = 0.76; I2 = 66%]. Meta-analysis of four cohort studies again showed no significant effect [RR, 1.21 (95% CI 0.56–2.61); P = 0.62; I2 = 30%]. A meta-analysis of eight randomized controlled trials comparing metformin (n = 838) with insulin (n = 836), however, showed a reduced risk of pre-eclampsia with metformin [RR, 0.68 (95% CI 0.48–0.95); P = 0.02; I2 = 0%]. No heterogeneity was present in the metformin vs. insulin analysis of randomized controlled trials, whereas high levels of heterogeneity were present in studies comparing metformin with placebo/control. Pre-eclampsia was a secondary outcome in most of the studies. The mean weight gain from time of enrolment to delivery was lower in the metformin group (P = 0.05, metformin vs. placebo; P = 0.004, metformin vs. insulin). Conclusions: In studies randomizing pregnant women to glucose-lowering therapy, metformin was associated with lower gestational weight gain and a lower risk of pre-eclampsia compared with insulin

    Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria

    Get PDF
    Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks' gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24-34 weeks' gestation); two prospective cohorts collected on the day of delivery (36 + 3-41 + 3 weeks' gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses

    Low-dose betamethasone-acetate for fetal lung maturation in preterm sheep

    Get PDF
    BackgroundAntenatal steroids are standard of care for women who are at risk of preterm delivery; however, antenatal steroid dosing and formulation have not been evaluated adequately. The standard clinical 2-dose treatment with betamethasone-acetate+betamethasone-phosphate is more effective than 2 doses of betamethasone-phosphate for the induction of lung maturation in preterm fetal sheep. We hypothesized that the slowly released betamethasone-acetate component induces similar lung maturation to betamethasone-phosphate+betamethasone-acetate with decreased dose and fetal exposure.ObjectiveThe purpose of this study was to investigate pharmacokinetics and fetal lung maturation of antenatal betamethasone-acetate in preterm fetal sheep.Study designGroups of 10 singleton-pregnant ewes received 1 or 2 intramuscular doses 24 hours apart of 0.25 mg/kg/dose of betamethasone-phosphate+betamethasone-acetate (the standard of care dose) or 1 intramuscular dose of 0.5 mg/kg, 0.25 mg/kg, or 0.125 mg/kg of betamethasone-acetate. Fetuses were delivered 48 hours after the first injection at 122 days of gestation (80% of term) and ventilated for 30 minutes, with ventilator settings, compliance, vital signs, and blood gas measurements recorded every 10 minutes. After ventilation, we measured static lung pressure-volume curves and sampled the lungs for messenger RNA measurements. Other groups of pregnant ewes and fetuses were catheterized and treated with intramuscular injections of betamethasone-phosphate 0.125 mg/kg, betamethasone-acetate 0.125 mg/kg, or betamethasone-acetate 0.5 mg/kg. Maternal and fetal betamethasone concentrations in plasma were measured for 24 hours.ResultsAll betamethasone-treated groups had increased messenger RNA expression of surfactant proteins A, B, and C, ATP-binding cassette subfamily A member 3, and aquaporin-5 compared with control animals. Treatment with 1 dose of intramuscular betamethasone-acetate 0.125mg/kg improved dynamic and static lung compliance, gas exchange, and ventilation efficiency similarly to the standard treatment of 2 doses of 0.25 m/kg of betamethasone-acetate+betamethasone-phosphate. Betamethasone-acetate 0.125 mg/kg resulted in lower maternal and fetal peak plasma concentrations and decreased fetal exposure to betamethasone compared with betamethasone-phosphate 0.125 mg/kg.ConclusionA single dose of betamethasone-acetate results in similar fetal lung maturation as the 2-dose clinical formulation of betamethasone-phosphate+betamethasone-acetate with decreased fetal exposure to betamethasone. A lower dose of betamethasone-acetate may be an effective alternative to induce fetal lung maturation with less risk to the fetus

    Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury

    Get PDF
    Intrauterine growth restriction (IUGR) is a complex global healthcare issue. Concerted research and clinical efforts have improved our knowledge of the neurodevelopmental sequelae of IUGR which has raised the profile of this complex problem. Nevertheless, there is still a lack of therapies to prevent the substantial rates of fetal demise or the constellation of permanent neurological deficits that arise from IUGR. The purpose of this article is to highlight the clinical and translational gaps in our knowledge that hamper our collective efforts to improve the neurological sequelae of IUGR. Also, we draw attention to cutting-edge tools and techniques that can provide novel insights into this disorder, and technologies that offer the potential for better drug design and delivery. We cover topics including: how we can improve our use of crib-side monitoring options, what we still need to know about inflammation in IUGR, the necessity for more human post-mortem studies, lessons from improved integrated histology-imaging analyses regarding the cell-specific nature of magnetic resonance imaging (MRI) signals, options to improve risk stratification with genomic analysis, and treatments mediated by nanoparticle delivery which are designed to modify specific cell functions

    Mild prenatal stress causes emotional and brain structural modifications in rats of both sexes

    Get PDF
    Stress or high levels of glucocorticoids (GCs) during developmental periods is known to induce persistent effects in the neuroendocrine circuits that control stress response, which may underlie individuals' increased risk for developing neuropsychiatric conditions later in life, such as anxiety or depression. We developed a rat model (Wistar han) of mild exposure to unpredictable prenatal stress (PS), which consists in a 4-h stressor administered three times per week on a random basis; stressors include strobe lights, noise and restrain. Pregnant dams subjected to this protocol present disrupted circadian corticosterone secretion and increased corticosterone secretion upon acute stress exposure. Regarding progeny, both young adult (2 months old) male and female rats present increased levels of circulating corticosterone and hyperactivity of the hypothalamus-pituitary-adrenal axis to acute stress exposure. Both sexes present anxious- and depressive-like behaviors, shown by the decreased time spent in the open arms of the elevated plus maze (EPM) and in the light side of the light-dark box (LDB), and by increased immobility time in the forced swim test, respectively. Interestingly, these results were accompanied by structural modifications of the bed nucleus of stria terminalis (BNST) and hippocampus, as well as decreased norepinephrine and dopamine levels in the BNST, and serotonin levels in the hippocampus. In summary, we characterize a new model of mild PS, and show that stressful events during pregnancy can lead to long-lasting structural and neurochemical effects in the offspring, which affect behavior in adulthood.FEDER funds, through Competitiveness Factors Operational Programme (COMPETE 2020) and the Lisbon Regional Operational Programme and by national funds through FCT—Fundação para a Ciência e a Tecnologia, in the scope of the project POCI-01-0145-FEDER-016428info:eu-repo/semantics/publishedVersio

    Maternal hormonal milieu influence on fetal brain development

    Get PDF
    An adverse maternal hormonal environment during pregnancy can be associated with abnormal brain growth. Subtle changes in fetal brain development have been observed even for maternal hormone levels within the currently accepted physiologic ranges. In this review, we provide an update of the research data on maternal hormonal impact on fetal neurodevelopment, giving particular emphasis to thyroid hormones and glucocorticoids. Thyroid hormones are required for normal brain development. Despite serum TSH appearing to be the most accurate indicator of thyroid function in pregnancy, maternal serum free T4 levels in the first trimester of pregnancy are the major determinant of postnatal psychomotor development. Even a transient period of maternal hypothyroxinemia at the beginning of neurogenesis can confer a higher risk of expressive language and nonverbal cognitive delays in offspring. Nevertheless, most recent clinical guidelines advocate for targeted high-risk case finding during first trimester of pregnancy despite universal thyroid function screening. Corticosteroids are determinant in suppressing cell proliferation and stimulating terminal differentiation, a fundamental switch for the maturation of fetal organs. Not surprisingly, intrauterine exposure to stress or high levels of glucocorticoids, endogenous or synthetic, has a molecular and structural impact on brain development and appears to impair cognition and increase anxiety and reactivity to stress. Limbic regions, such as hippocampus and amygdala, are particularly sensitive. Repeated doses of prenatal corticosteroids seem to have short-term benefits of less respiratory distress and fewer serious health problems in offspring. Nevertheless, neurodevelopmental growth in later childhood and adulthood needs further clarification. Future studies should address the relevance of monitoring the level of thyroid hormones and corticosteroids during pregnancy in the risk stratification for impaired postnatal neurodevelopment.This work was supported by the grant "Doutoramento em Medicina Jose de Mello Saude 2014" by Jose de Mello Saude to AM
    • …
    corecore