77 research outputs found
Open-label Trial of Lamotrigine Focusing on Efficacy in Vulvodynia
OBJECTIVE—Chronic pelvic pain (CPP) affects 15% of women and has a high rate of
psychiatric comorbidity. Vulvodynia, a vulvar pain syndrome that includes vulvar vestibulitis, is
the most common subtype of CPP. This study examined the efficacy of lamotrigine for the
treatment of CPP using an open-label design.
STUDY-DESIGN—Forty-three women with CPP were recruited from a specialty pelvic pain
clinic. Of these, 31 completed 8 weeks of active treatment. Outcome variables included the McGill
Pain Rating Index and subscales of pain intensity and the Hamilton Depression and Anxiety
Rating Scales.
RESULTS—We found significant reductions in all pain and mood measures at the 8-week visit
compared to baseline. In particular, women with vulvodynia-type CPP (N=17) had robust
reductions in pain and mood symptoms.
CONCLUSION—CPP is a heterogeneous disorder, with psychiatric comorbidity and poor
treatment response. This open-label study suggests that treatment with lamotrigine in women with
the vulvodynia subtype of CPP may be helpful in addressing both the pain and mood symptoms
associated with this disorder
Centerscope
Centerscope, formerly Scope, was published by the Boston University Medical Center "to communicate the concern of the Medical Center for the development and maintenance of improved health care in contemporary society.
Recommended from our members
Genetic insights into biological mechanisms governing human ovarian ageing
Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease
The genetic determinants of recurrent somatic mutations in 43,693 blood genomes
Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences
Genetic diversity fuels gene discovery for tobacco and alcohol use
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury(1-4). These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries(5). Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Peer reviewe
What Causes Obesity? And Why has it Grown so Much? An Alternative View
The purpose of this paper is to explain the main social and economic facts concerning obesity in a way that substantially improves upon existing economic theory. In contrast to existing theory, a number of recent health science writers have explained persuasively that weight gain or loss is not strictly determined by net calorie consumption. These writers have explained that what food people eat and the effect these foods have on hormones such as insulin and hormonal balance are the crucial factors. To understand the rising prevalence of obesity, it is necessary to take into account the growing infrastructure of obesity. This infrastructure includes food processing firms, notably their behavior relating to the qualities of processed food, their marketing of 'junk food' and fast food, and their food cost reducing technological changes. Another factor in rising obesity levels are the human capital resources of people, most notably their social capital, personal capital, and health capital. There is evidence that people who are poor in these intangible capacities are the ones with the highest rates of obesity. The essence of the theory is that obesity is the expected result when vulnerable people with low intangible capital resources encounter the many influences of the infrastructure of obesity. These people have gotten stuck in dysfunctional eating and exercise patterns which societal influences have unfortunately encouraged
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
A multi-ancestry genome-wide study incorporating gene-smoking interactions identifies multiple new loci for pulse pressure and mean arterial pressure
Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P <5 x 10(-8), false discovery rate <0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.Peer reviewe
- …