77 research outputs found

    Risk estimation of distant metastasis in node-negative, estrogen receptor-positive breast cancer patients using an RT-PCR based prognostic expression signature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Given the large number of genes purported to be prognostic for breast cancer, it would be optimal if the genes identified are not confounded by the continuously changing systemic therapies. The aim of this study was to discover and validate a breast cancer prognostic expression signature for distant metastasis in untreated, early stage, lymph node-negative (N-) estrogen receptor-positive (ER+) patients with extensive follow-up times.</p> <p>Methods</p> <p>197 genes previously associated with metastasis and ER status were profiled from 142 untreated breast cancer subjects. A "metastasis score" (MS) representing fourteen differentially expressed genes was developed and evaluated for its association with distant-metastasis-free survival (DMFS). Categorical risk classification was established from the continuous MS and further evaluated on an independent set of 279 untreated subjects. A third set of 45 subjects was tested to determine the prognostic performance of the MS in tamoxifen-treated women.</p> <p>Results</p> <p>A 14-gene signature was found to be significantly associated (p < 0.05) with distant metastasis in a training set and subsequently in an independent validation set. In the validation set, the hazard ratios (HR) of the high risk compared to low risk groups were 4.02 (95% CI 1.91–8.44) for the endpoint of DMFS and 1.97 (95% CI 1.28 to 3.04) for overall survival after adjustment for age, tumor size and grade. The low and high MS risk groups had 10-year estimates (95% CI) of 96% (90–99%) and 72% (64–78%) respectively, for DMFS and 91% (84–95%) and 68% (61–75%), respectively for overall survival. Performance characteristics of the signature in the two sets were similar. Ki-67 labeling index (LI) was predictive for recurrent disease in the training set, but lost significance after adjustment for the expression signature. In a study of tamoxifen-treated patients, the HR for DMFS in high compared to low risk groups was 3.61 (95% CI 0.86–15.14).</p> <p>Conclusion</p> <p>The 14-gene signature is significantly associated with risk of distant metastasis. The signature has a predominance of proliferation genes which have prognostic significance above that of Ki-67 LI and may aid in prioritizing future mechanistic studies and therapeutic interventions.</p

    Common workflows for computing material properties using different quantum engines

    Get PDF
    The prediction of material properties based on density-functional theory has become routinely common, thanks, in part, to the steady increase in the number and robustness of available simulation packages. This plurality of codes and methods is both a boon and a burden. While providing great opportunities for cross-verification, these packages adopt different methods, algorithms, and paradigms, making it challenging to choose, master, and efficiently use them. We demonstrate how developing common interfaces for workflows that automatically compute material properties greatly simplifies interoperability and cross-verification. We introduce design rules for reusable, code-agnostic, workflow interfaces to compute well-defined material properties, which we implement for eleven quantum engines and use to compute various material properties. Each implementation encodes carefully selected simulation parameters and workflow logic, making the implementer’s expertise of the quantum engine directly available to non-experts. All workflows are made available as open-source and full reproducibility of the workflows is guaranteed through the use of the AiiDA infrastructure.This work is supported by the MARVEL National Centre of Competence in Research (NCCR) funded by the Swiss National Science Foundation (grant agreement ID 51NF40-182892) and by the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 824143 (European MaX Centre of Excellence “Materials design at the Exascale”) and Grant Agreement No. 814487 (INTERSECT project). We thank M. Giantomassi and J.-M. Beuken for their contributions in adding support for PseudoDojo tables to the aiida-pseudo (https://github.com/aiidateam/aiida-pseudo) plugin. We also thank X. Gonze, M. Giantomassi, M. Probert, C. Pickard, P. Hasnip, J. Hutter, M. Iannuzzi, D. Wortmann, S. BlĂŒgel, J. Hess, F. Neese, and P. Delugas for providing useful feedback on the various quantum engine implementations. S.P. acknowledges support from the European Unions Horizon 2020 Research and Innovation Programme, under the Marie SkƂodowska-Curie Grant Agreement SELPH2D No. 839217 and computer time provided by the PRACE-21 resources MareNostrum at BSC-CNS. E.F.-L. acknowledges the support of the Norwegian Research Council (project number 262339) and computational resources provided by Sigma2. P.Z.-P. thanks to the Faraday Institution CATMAT project (EP/S003053/1, FIRG016) for financial support. KE acknowledges the Swiss National Science Foundation (grant number 200020-182015). G.Pi. and K.E. acknowledge the swissuniversities “Materials Cloud” (project number 201-003). Work at ICMAB is supported by the Severo Ochoa Centers of Excellence Program (MICINN CEX2019-000917-S), by PGC2018-096955-B-C44 (MCIU/AEI/FEDER, UE), and by GenCat 2017SGR1506. B.Z. thanks to the Faraday Institution FutureCat project (EP/S003053/1, FIRG017) for financial support. J.B. and V.T. acknowledge support by the Joint Lab Virtual Materials Design (JLVMD) of the Forschungszentrum JĂŒlich.Peer reviewe

    Carnival, Calypso and Dancehall Cultures: Making the Popular Political in Contemporary Caribbean Writing

    Get PDF

    Implications of New Proteomics Strategies for Biology and Medicine

    No full text
    • 

    corecore