192 research outputs found

    Noncontingent and Response-Contingent Intravenous Ethanol Attenuates the Effect of Naltrexone on Hypothalamic-Pituitary-Adrenal Activity in Rhesus Monkeys

    Full text link
    Background : The mechanism by which the opioid antagonist naltrexone suppresses overconsumption of ethanol is unclear. Oral ethanol consumption in humans increases hypothalamic-pituitary-adrenal (HPA) activity, and recent studies suggest that naltrexone may reduce ethanol consumption by modifying the HPA-stimulating effects of ethanol. The purpose of this study was to measure in rhesus monkeys the effects of ethanol and naltrexone, alone and in combination, on plasma levels of adrenocorticotropin hormone (ACTH). Methods : Nine adult male and female rhesus monkeys with chronic, indwelling intravenous catheters were maintained on tethers that allowed ethanol delivery and blood sampling. In one study, the monkeys received intramuscular injections of saline or 0.32 mg/kg naltrexone followed by noncontingent intravenous bolus infusions of saline or 0.3 to 1.8 g/kg ethanol. In a second study, other monkeys were given intramuscular injections of saline or 0.01 to 0.3 mg/kg naltrexone and subsequently responded on levers to receive intravenous saline or ethanol 0.03 g/kg per injection. Results : Ethanol, delivered either response contingently or noncontingently, did not produce systematic changes in ACTH plasma levels. Naltrexone alone produced increases in plasma ACTH that were attenuated by the subsequent administration of noncontingent or response-contingent ethanol. Naltrexone also produced dose-dependent reductions in intravenous ethanol self-administration. Linear regression analysis indicated that ethanol intake was negatively correlated with the plasma levels of ACTH over time. Conclusions : The route of administration may modulate ethanol's effects on HPA activity. Ethanol may attenuate naltrexone's effect on the HPA axis by impairing HPA axis sensitivity to other stimuli. The negative correlation between ethanol intake and ACTH levels supports the notion that naltrexone's effect of increasing HPA axis activity may be related to its ability to suppress ethanol consumption.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66078/1/01.ALC.0000121655.48922.C4.pd

    Essential Elements of Lessons Designed to Promote Critical Thinking

    Get PDF
    Abstract While many educators commonly identify critical thinking as a goal for learning, they struggle with creating lessons that encourage students to take charge of their own thinking. This paper presents four essential elements of lessons designed to promote critical thinking including ill-structured problems, criteria for assessing thinking, student assessment of thinking, and improvement of thinking. With these four elements in place an iterative process of lesson planning emerges which simplifies the planning process for teachers while engaging students' thinking to benefit their learning

    Self-administration of fentanyl, cocaine and ketamine: effects on the pituitary–adrenal axis in rhesus monkeys

    Full text link
    Drugs of abuse can affect the functioning of the hypothalamic–pituitary–adrenal (HPA) axis. Acute administration of drugs that serve as reinforcers have been observed to stimulate the rat HPA axis, leading to the suggestion that these stimulatory effects may contribute to the development of drug-maintained behaviors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46362/1/213_2004_Article_1891.pd

    Differential regulation of mGlu5 R and ΜOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice.

    Get PDF
    The key problem for the treatment of drug addiction is relapse to drug use after abstinence that can be triggered by drug-associated cues, re-exposure to the drug itself and stress. Understanding the neurobiological mechanisms underlying relapse is essential in order to develop effective pharmacotherapies for its prevention. Given the evidence implicating the metabotropic glutamate receptor 5 (mGlu5 R), μ-opioid receptor (MOPr), κ-opioid receptor (ΚOPr) and oxytocin receptor (OTR) systems in cocaine addiction and relapse, our aim was to assess the modulation of these receptors using a mouse model of cue- and priming-induced reinstatement of cocaine seeking. Male mice were trained to self-administer cocaine (1 mg/kg/infusion, i.v.) and were randomized into different groups: (1) cocaine self-administration; (2) cocaine extinction; (3) cocaine-primed (10 mg/kg i.p.); or (4) cue-induced reinstatement of cocaine seeking. Mice undergoing the same protocols but receiving saline instead of cocaine were used as controls. Quantitative autoradiography of mGlu5 R, MOPr, KOPr and OTR showed a persistent cocaine-induced upregulation of the mGlu5 R and OTR in the lateral septum and central amygdala, respectively. Moreover, a downregulation of mGlu5 R and MOPr was observed in the basolateral amygdala and striatum, respectively. Further, we showed that priming- but not cue-induced reinstatement upregulates mGlu5 R and MOPr binding in the nucleus accumbens core and basolateral amygdala, respectively, while cue- but not priming-induced reinstatement downregulates MOPr binding in caudate putamen and nucleus accumbens core. This is the first study to provide direct evidence of reinstatement-induced receptor alterations that are likely to contribute to the neurobiological mechanisms underpinning relapse to cocaine seeking

    Neurobiological Mechanisms That Contribute to Stress-related Cocaine Use

    Get PDF
    The ability of stressful life events to trigger drug use is particularly problematic for the management of cocaine addiction due to the unpredictable and often uncontrollable nature of stress. For this reason, understanding the neurobiological processes that contribute to stress-related drug use is important for the development of new and more effective treatment strategies aimed at minimizing the role of stress in the addiction cycle. In this review we discuss the neurocircuitry that has been implicated in stress-induced drug use with an emphasis on corticotropin releasing factor actions in the ventral tegmental area (VTA) and an important pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine via actions at beta adrenergic receptors. In addition to the neurobiological mechanisms that underlie stress-induced cocaine seeking, we review findings suggesting that the ability of stressful stimuli to trigger cocaine use emerges and intensifies in an intake-dependent manner with repeated cocaine self-administration. Further, we discuss evidence that the drug-induced neuroadaptations that are necessary for heightened susceptibility to stress-induced drug use are reliant on elevated levels of glucocorticoid hormones at the time of cocaine use. Finally, the potential ability of stress to function as a “stage setter” for drug use – increasing sensitivity to cocaine and drug-associated cues – under conditions where it does not directly trigger cocaine seeking is discussed. As our understanding of the mechanisms through which stress promotes drug use advances, the hope is that so too will the available tools for effectively managing addiction, particularly in cocaine addicts whose drug use is stress-driven

    Self-administration of methohexital, midazolam and ethanol: effects on the pituitary–adrenal axis in rhesus monkeys

    Full text link
    There is disagreement in the literature with respect to how drugs of abuse affect the functioning of the hypothalamic–pituitary–adrenal (HPA) axis, and whether these changes in endocrine function may be related to the rewarding effects of these drugs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46363/1/213_2004_Article_1986.pd

    The oxytocin analogue carbetocin prevents emotional impairment and stress-induced reinstatement of opioid-seeking in morphine-abstinent mice.

    Get PDF
    The main challenge in treating opioid addicts is to maintain abstinence due to the affective consequences associated with withdrawal which may trigger relapse. Emerging evidence suggests a role of the neurohypophysial peptide oxytocin (OT) in the modulation of mood disorders as well as drug addiction. However, its involvement in the emotional consequences of drug abstinence remains unclear. We investigated the effect of 7-day opioid abstinence on the oxytocinergic system and assessed the effect of the OT analogue carbetocin (CBT) on the emotional consequences of opioid abstinence, as well as relapse. Male C57BL/6J mice were treated with a chronic escalating-dose morphine regimen (20-100 mg/kg/day, i.p.). Seven days withdrawal from this administration paradigm induced a decrease of hypothalamic OT levels and a concomitant increase of oxytocin receptor (OTR) binding in the lateral septum and amygdala. Although no physical withdrawal symptoms or alterations in the plasma corticosterone levels were observed after 7 days of abstinence, mice exhibited increased anxiety-like and depressive-like behaviors and impaired sociability. CBT (6.4 mg/kg, i.p.) attenuated the observed negative emotional consequences of opioid withdrawal. Furthermore, in the conditioned place preference paradigm with 10 mg/kg morphine conditioning, CBT (6.4 mg/kg, i.p.) was able to prevent the stress-induced reinstatement to morphine-seeking following extinction. Overall, our results suggest that alterations of the oxytocinergic system contribute to the mechanisms underlying anxiety, depression, and social deficits observed during opioid abstinence. This study also highlights the oxytocinergic system as a target for developing pharmacotherapy for the treatment of emotional impairment associated with abstinence and thereby prevention of relapse

    Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation

    Get PDF
    The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF1) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF1 antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.The authors were supported by the Department of Veterans Affairs; NIH NIAAA grants P60AA010760, R24AA020245 and U01AA013519 and NIH NIDA grant P50DA018165, during the writing of this manuscript. The authors have no financial conflict of interest to disclose

    The effects of CRF antagonists, antalarmin, CP154,526, LWH234, and R121919, in the forced swim test and on swim-induced increases in adrenocorticotropin in rats

    Full text link
    Exposure to extreme stress has been suggested to produce long-term, detrimental alterations in the hypothalamic–pituitary–adrenal (HPA) axis leading to the development of mental disorders such as depression. Therefore, compounds that block the effects of stress hormones were investigated as potential therapeutics for depression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46365/1/213_2005_Article_2164.pd
    corecore