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Abstract

The results of many studies support the influence of the corticotropin-releasing factor (CRF) 

system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the 

addiction process. This review summarizes the preclinical data in this area after first providing an 

overview of the components of the CRF system. This complex system involves hypothalamic and 

extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of 

stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and 

targets make up this system and show differences in their involvement in EtOH drinking and in the 

effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches 

paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF1) in 

EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking 

during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human 

primates and humans have provided some evidence of associations of genetic polymorphisms in 

CRF-related genes with EtOH drinking, although additional data are needed. These results suggest 

that CRF1 antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, 

given the broad and important role of these receptors in adaptation to environmental and other 

challenges, full antagonist effects may be too profound and consideration should be given to 

treatments with modulatory effects.
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Interest in stress and stress-associated pathways for their roles in alcohol (ethanol, EtOH) 

use and related symptoms has a long history. The focus has evolved over time from 
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examination of behavioral effects of stressors on EtOH-associated traits and effects of EtOH 

on stress-axis measures, such as corticosterone (CORT) and adrenocorticotropin hormone 

(ACTH) levels, to investigation of the relevance of central and peripheral peptides and 

receptors. In the last decade, a number of excellent reviews have described much of this 

literature and have influenced the authors' perspectives (Allen et al. 2011; Armario 2010; 

Burke & Miczek 2014; Ciccocioppo et al. 2009; Clapp et al. 2008; Crabbe et al. 2006; 

Gilpin 2012; Griffin 2014; Heilig & Koob 2007; Heilig et al. 2010; Koob 2013; Leggio et al. 
2010; Lowery & Thiele 2010; Lu & Richardson 2014; Martin-Fardon et al. 2010; Rivier 

2014; Roberto et al. 2012; Ryabinin & Weitemier 2006; Ryabinin et al. 2012; Shalev et al. 
2010; Silberman et al. 2009; Sommer & Saavedra 2008; Spanagel et al. 2014; Sprow & 

Thiele 2012; Thiele 2012; Weiss et al. 2001; Wong & Schumann 2012; Zorrilla et al. 2013, 

2014). Because there is already an excellent, recent literature in this area, we do not 

comprehensively repeat this information in the current review. Rather, this article reviews the 

preclinical literature investigating the importance of the corticotropin-releasing factor (CRF) 

system specifically in EtOH consumption and neuroadaptation-related behaviors. We also 

include comments on pertinent human data and suggest future perspectives.

The CRF System

Corticotropin-releasing factor has also been known as corticotropin-releasing hormone or 

CRH and is a 41-amino acid neuropeptide critically involved in the regulation of 

neuroendocrine and behavioral responses to stress. An intricate CRF-mediated system, 

involving hypothalamic and extra-hypothalamic mechanisms, regulates peripheral and 

central actions that allow for preparation and adaptation to environmental challenges or 

stressors (Bale & Vale 2004; de Kloet 2013; Hauger et al. 2006). The seminal work of Vale 

and colleagues identified CRF as the primary molecule responsible for the activation of this 

neuroendocrine stress cascade, the hypothalamic–pituitary–adrenal (HPA) axis (Bale & 

Chen 2012; Rivier & Vale 1983a,1983b; Rivier et al. 1982; Spiess et al. 1981; Swanson et al. 
1983; Vale et al. 1981). Activation of the HPA axis is triggered by neurons of the medial 

dorsal parvocellular region of the paraventricular nucleus (PVN) of the hypothalamus 

(Armario 2006, 2010; Herman et al. 2003). This region is rich in CRF and other 

neuropeptides, such as vasopressin (arginine-vasopressin; AVP). Although the role of AVP 

in activating the HPA axis per se appears to be limited, AVP can significantly increase the 

effects of CRF (Rivier & Vale 1983a,1983b; Sawchenko et al. 1984; Vale et al. 1981, 1983).

Paraventricular nucleus neurons release CRF at the level of the median eminence, inducing 

(via the hypophyseal portal system) the release of ACTH by corticotrope cells of the anterior 

pituitary. In turn, ACTH activates the secretion of the glucocorticoid, CORT (cortisol in 

humans) from the zona fasciculata of the adrenal cortex. Corticosterone plays an important 

role in regulating a number of physiological functions and modulates CRF signaling via a 

hypothalamic negative feedback mechanism that decreases CRF-mediated HPA axis 

activation; CORT also regulates an extra-hypothalamic positive regulatory mechanism that 

increases CRF activity (Bale & Vale 2004; Shepard et al. 2006). In the mammalian brain, 

CRF is identified in the PVN, but high levels of CRF are also found outside of the 

hypothalamus in structures such as the central nucleus of the amygdala (CeA), bed nucleus 

of the stria terminalis (BNST), hippocampus, thalamus, midbrain and locus coeruleus 
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(Merchenthaler et al. 1982, 1984; Morin et al. 1999; Steckler & Holsboer 1999; Swanson et 
al. 1983). Glucocorticoid-induced increases in CRF activity have been particularly well 

characterized in the CeA and BNST (Shepard et al. 2006; Tran & Greenwood-Van Meerveld 

2012). The extra-hypothalamic, neuroregulatory actions of CRF contribute to the integration 

of endocrine, sympathetic, behavioral and cognitive responses to stress, and are particularly 

involved in the emotional component of stress (Gilpin 2012; Hauger et al. 2006; Müller et al. 
2003; Walker & Davis 2008; Walker et al. 2009). Although stressors initiate a series of CRF-

mediated neuronal responses that can be beneficial and adaptive, dysregulation of CRF 

systems can be deleterious, and has been linked to a wide range of disorders including 

anxiety, depression, obsessive-compulsive disorder, post-traumatic stress disorder and 

addiction (Cador et al. 1993; Cole et al. 1990; Haass-Koffler & Bartlett 2012; Heilig & Egli 

2006; Koob & Kreek 2007; Koob & Le Moal 2001; Sarnyai et al. 2001).

CRF system endogenous ligands, binding targets and pathways

Figure 1 summarizes the endogenous ligands, targets and target distribution, and illustrates 

the affinity of each CRF family neuropeptide for each CRF-related binding target. CRF 

actions are exerted through two Gs-protein coupled receptors, CRF type-1 (CRF1) and 

type-2 (CRF2), which share about 70% amino acid sequence identity (Bale & Vale 2004; 

Hauger et al. 2006). Corticotropin-releasing factor shows greater affinity for CRF1 (Herman 

et al. 2003; Vaughan et al. 1995) and CRF-initiated activation of the HPA axis is mediated 

by CRF1 (Armario 2006; Bale & Vale 2004). Corticotropin-releasing factor type-1 

expression is found in many brain regions (Justice et al. 2008; Korosi et al. 2006, 2007; 

Kühne et al. 2012; Van Pett et al. 2000). In the cortex and hippocampus, CRF1 is present on 

glutamatergic neurons, whereas CRF1 is found on γ-aminobutyric acid (GABA) neurons in 

the striatum (including the nucleus accumbens; NAcc) and dopamine (DA) neurons in the 

midbrain (including the ventral tegmental area; VTA) (Bonfiglio et al. 2011; Lemos et al. 
2012; Refojo et al. 2011). Corticotropin-releasing factor type-2 is also widely expressed in 

the central nervous system and found peripherally (Bittencourt & Sawchenko 2000; Korosi 

et al. 2006, 2007; Lukkes et al. 2011; Palchaudhuri et al. 1999; Van Pett et al. 2000). 

Although there is significant overlap in brain distribution of CRF1 and CRF2 (Hauger et al. 
2006; Lukkes et al. 2011), important differences in distribution have also been found. For 

example, CRF2, but not CRF1, is present in the ventromedial and medial preoptic nuclei of 

the hypothalamus; CRF1, but not CRF2, is expressed in the NAcc and the CeA; and both 

CRF1 and CRF2 are present in the medial nucleus of the amygdala (Bittencourt & 

Sawchenko 2000; Hauger et al. 2006; Van Pett et al. 2000). A primary CRF2-mediated 

regulation of serotonergic neurons in the dorsal raphe (DR), with implications for anxiety 

and depression, has also been described (Hauger et al. 2006; Meloni et al. 2008).

Corticotropin-releasing factor also binds to CRF-binding protein (CRF-BP), which is found 

centrally and peripherally (Alderman & Bernier 2007; Manuel et al. 2014; Potter et al. 
1992). Several central locations are listed in Figure 1. The CeA is a particularly CRF-BP 

dense region (Alderman & Bernier 2007; Potter et al. 1992). Some of the proposed functions 

of CRF-BP are to restrict transport/release of CRF in some centrally located pathways 

(Potter et al. 1992), aid in protecting CRF from degradation once it has been released 
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(Seasholtz et al. 2002) and modulate CRF-induced potentiation of glutamate receptor 

function via CRF2 actions (Ungless et al. 2003).

The complexity of the CRF system is further increased by the existence of additional 

endogenous agonists. Corticotropin-releasing factor receptors can be activated by the 

urocortin (Ucn) family of neuropeptides: Ucn1, Ucn2 and Ucn3. Urocortin1 binds with 

similar affinity to CRF1, CRF2 and CRF-BP, whereas Ucn2 and Ucn3 bind primarily to 

CRF2 (Bittencourt et al. 1999; Lewis et al. 2001; Reyes et al. 2001; Ryabinin et al. 2012; 

Vaughan et al. 1995). Urocortin1 is predominantly expressed in the centrally projecting 

Edinger–Westphal (EWcp) nucleus (Bittencourt et al. 1999; Kozicz et al. 1998; Ryabinin et 
al. 2005; Vaughan et al. 1995). Note that two divisions of the EW have been named EWcp 

and EWpg (preganglionic), based on cell groups and projections (Kozicz et al. 2011). Cells 

in the EWcp contain stress-and feeding-related neuropeptides, such as Ucn1, whereas the 

EWpg contains neurons that control oculomotor function and send cholinergic inputs to the 

ciliary ganglion. Urocortin2 and Ucn3 are more widely distributed than Ucn1. Among other 

structures, Ucn2 is present in the hypothalamus (PVN and arcuate nucleus) and the locus 

coeruleus, and Ucn3 is expressed in several brain structures, including the BNST and the 

medial nucleus of the amygdala (Cavalcante et al. 2006; Deussing et al. 2010; Lewis et al. 
2001; Li et al. 2002; Reyes et al. 2001; Tanaka et al. 2003).

The CRF system has a key role in mood disorders (Aubry 2013; Kormos & Gaszner 2013). 

Activation of CRF1 and CRF2 has been associated with negative emotionality, anxiety-like 

behavior and the behavioral responses to stress, with CRF1 thought to be responsible for the 

initiation of such responses and CRF2 mediating termination and recovery (Coste et al. 
2006; Hauger et al. 2006; Janssen & Kozicz 2013). The roles of CRF1 and CRF2 in behavior 

have also been interpreted with regard to their involvement in responses to (real or 

perceived) escapable vs. inescapable stressors. For example, CRF1 mediates active defensive 

responses to escapable stressors, and CRF2 mediates responses to inescapable, 

uncontrollable stressors that could be associated with anxiety and depression vulnerability 

(Hauger et al. 2006). The involvement of CRF and Ucn peptides in stress-induced feeding 

behavior has received considerable attention (Stengel & Tache 2014), and mounting 

evidence is supporting involvement of CRF and Ucns in different aspects of social behavior 

(for a review, see Hostetler & Ryabinin 2013).

Overall, CRF systems play an important role in regulating a number of functions with key 

implications for adaptive behavior, motivation and emotion. Over the last three decades, 

special emphasis has been placed on the understanding of the behavioral relevance of stress- 

and drug-induced long-term changes in CRF system neurophysiology. This brief description 

does not do justice to a rich literature pertaining to a wide range of behaviors that involve 

CRF1 and CRF2 signaling, and the reader is referred to the reviews cited above. In the next 

section, we focus on the role of CRF and its receptor in the context of addiction, and 

specifically its importance in EtOH intake, changes in intake and behavioral traits that 

reflect neuroplasticity induced by chronic EtOH exposure. Figure 2 illustrates some of the 

central CRF-related neurocircuitry that may be involved in EtOH-related phenotypes 

discussed in this review. For example, the CeA and BNST play important roles in negative 

emotional states that drive chronic EtOH use in some individuals; the basolateral amygdala 
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(BLA) further affects this circuit. The periaqueductal gray, in its role as an important 

functional interface between the forebrain and lower brainstem, has a probable effect as an 

integrator of behavioral responses to stressors, both internal and external. The prefrontal 

cortex has well-known executive functions that affect not only craving and habit formation 

via interactions with other brain nuclei, such as the dorsal striatum (not shown here), but also 

basic reinforcement and conditioned reinforcement via the NAcc shell and core, 

respectively, which sustain use and impact relapse. Also, receptor types found in the 

included brain regions and transmitters in neural pathways that direct communication are 

included in Fig. 2. For example, the PVN is a critical regulator of stress responses and is 

modulated by a serotonergic projection from the DR. For additional important information, 

the reader is referred to papers and figures that consider disorders that are co-morbid with 

addiction (Gilpin 2014; Reul & Holsboer 2002) and articles that discuss important 

functional differences of sub-regions of structures, such as the prefrontal cortex (George & 

Koob 2010; Lu & Richardson 2014; Marchant et al. 2014) and CeA (Duvarci & Pare 2014; 

Gilpin 2014).

Addiction and the CRF system: a common pathway for drugs of abuse

One psychopathology commonly associated with CRF dys-regulation and stress is drug 

addiction. All drugs of abuse, regardless of specific mechanism of action, induce activation 

of CRF signaling and the HPA axis (for reviews, see Armario 2010; McReynolds et al. 
2014), and their effects are modulated by stress (Aguilar et al. 2013; Picetti et al. 2013; 

Roberts et al. 1995; Stephens & Wand 2012). Additionally, these addictive substances 

produce important CRF-mediated and stress-influenced long-lasting neuroadaptations that 

have been suggested to explain key aspects of the development and maintenance of the 

addictive phenotype (Koob 2013; Koob & Le Moal 2001; Leyton & Vezina 2014; Robinson 

& Berridge 1993, 2008; Wise & Koob 2014; Zorrilla et al. 2014).

All abused drugs sensitize mesolimbic DA mechanisms and induce behavioral sensitization 

to their stimulant effects; in fact, behavioral, or psychomotor, sensitization has been used 

extensively as a measurable phenotype of such underlying neuroplasticity (Robinson & 

Berridge 1993, 2008; Sanchis-Segura & Spanagel 2006). Mesocorticolimbic DA signaling 

has been associated with different components of positive reinforcement and reward 

processes, including activation, motivation, incentive salience, ‘wanting’ (but not necessarily 

‘liking’), effort, goal-directed behavior and reward-related learning (Berridge & Kringelbach 

2013; Salamone & Correa 2012; Schultz 2013; but also see Wise 2008). Long-lasting 

upregulation of DA mechanisms has been linked to unmanageable pathological motivation 

and compulsive drug seeking and taking characteristic of addiction. Evidence indicates that 

stress produces a CRF-mediated activation of DA systems that is comparable to that induced 

by addictive substances (Sinha 2008). This is, moreover, an effect that appears to be 

especially critical during adolescence, a time when maturing DA systems show increased 

sensitivity to stress hormones (Burke & Miczek 2014; Sinclair et al. 2014). Cross-

sensitization between stressors and addictive drugs, including EtOH (Roberts et al. 1995), 

has also been described. Additionally, research on humans has shown that stress elevates 

striatal extracellular DA levels (Adler et al. 2000; Soliman et al. 2008). Stress and CRF 

activation can therefore be understood as key facilitators of drug-induced neuroplasticity in 
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mesocorticolimbic DA systems associated with dysregulation of positive reinforcement 

mechanisms in addiction.

Abused drugs and stress also produce enduring changes within CRF systems. Long-lasting 

dysregulation of extra-hypothalamic CRF mechanisms (primarily extended amygdala, and 

also prefrontal cortex neurocircuitry) have been linked to the negative emotionality, anxiety 

and vulnerability to stress seen in addicts (Gerra et al. 2014; Thorberg & Lyvers 2006; 

Valdez & Koob 2004). As discussed in greater detail below for EtOH, drug-induced 

activation of brain stress response systems sensitizes over time, especially with repeated 

withdrawal, and this sensitization has been seen to persevere into protracted abstinence, 

critically contributing to the persistence of relapse. Extra-hypothalamic CRF dysregulation 

is a key biological mechanism underlying manifestation of negative emotional states 

associated with drug abstinence, even well beyond the time when physical symptoms of 

withdrawal are seen (Koob 2014; Koob & Le Moal 2008). However, important HPA axis-

dependent effects, such as upregulation of glucocorticoid receptors (GRs) in the CeA, 

associated with protracted EtOH abstinence, indicate that both hypothalamic and extra-

hypothalamic mechanisms interact and participate in critical aspects of long-lasting drug-

induced neuroadaptation (Vendruscolo et al. 2012). Overall, strong scientific support 

suggests that dysregulation of positive and negative reinforcement mechanisms, which 

underlie pathological motivation associated with drug craving and increased negative 

emotionality and vulnerability to stress, critically involve the CRF system.

Corticotropin-releasing factor and stress-axis involvement have received particular attention 

in the context of the investigation of the neurobiological effects of EtOH. At a 

neurophysiological level, laboratory animal and human research show that systemic 

administration of EtOH increases CRF and induces HPA axis activation (Jenkins & 

Connolly 1968; Pastor et al. 2008, 2011; Rivier 1996). Although the precise mechanism by 

which EtOH stimulates stress systems and hormones is yet to be fully described, growing 

evidence indicates that this is a central, CRF/CRF1-mediated effect (recently reviewed by 

Armario 2010). Convincing support for this conclusion arises from a number of studies 

showing HPA axis activation with systemic or intracere-broventricular (ICV) administration 

of EtOH (Lee et al. 2004; Ogilvie et al. 1998), as well as a blunted HPA response to EtOH in 

CRF1 null mutant mice (Lee et al. 2001b; Pastor et al. 2008) or after administration of a 

CRF antiserum (Rivier et al. 1984).

Hypothalamic regulation of glucocorticoids is altered by a history of EtOH exposure; human 

and rodent data show that repeated EtOH produces an increase in baseline levels of CORT, 

with a flattening of natural glucocorticoid circadian level variations and a diminished 

response to stress challenges (Errico et al. 1993; Lee & Rivier 1997; Lee et al. 2001a; 

Rasmussen et al. 2000; Wand & Dobs 1991). However, the effects of chronic EtOH and 

EtOH withdrawal on CRF systems are complex and depend on EtOH administration 

procedures, time of measurement and whether other stressful stimuli are included in the 

study design (for a review, see Allen et al. 2011). For example, one study examined the 

effect of 14 days of continuous EtOH vapor exposure in Sprague–Dawley rats and found a 

decrease in the number of CRF-binding sites in the pituitary when tissue was taken 

immediately after withdrawal from EtOH (Dave et al. 1986). However, in another study, 
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again in Sprague–Dawley rats, 7 days of continuous vapor exposure were associated with 

decreased hypothalamic CRF content in tissue obtained immediately after withdrawal 

(Rivier et al. 1984). A change in the same direction in these two studies suggests that the 

decrease in receptors was not a compensatory change; however, the methods were not 

identical in the two studies, complicating interpretation. A number of studies examining 

CRF-related effects have used intermittent, rather than continuous, vapor exposure 

procedures. For example, using a 6 h/day, 8-day EtOH vapor exposure period, CRF stores in 

the external zone of the median eminence of Sprague–Dawley rats were decreased; tissue 

was taken ∼12 h after withdrawal (Lee et al. 2000). Criado et al. (2011) exposed Wistar rats 

to EtOH vapor for 14 h/day for either 2 or 8 weeks and then examined CRF 

immunoreactivity in the amygdala, frontal cortex, hippocampus and parietal cortex 

immediately, 24 h or 2 weeks after withdrawal from EtOH vapors. No significant effects 

were found in the rats exposed for 2 weeks. However, increased CRF immunoreactivity was 

found in the hippocampus and parietal cortex of rats exposed for 8 weeks, when examined 

24 h or 2 weeks, but not immediately, after withdrawal. These and other data not reviewed 

here (Koob & Zorrilla 2010; Läck et al. 2005; Richardson et al. 2008a; Sommer et al. 2008; 

Uhart & Wand 2009) show that effects of chronic EtOH exposure on CRF systems cannot be 

defined without careful consideration of methodological details. Furthermore, factors such 

as sex, species and age of stress or EtOH exposure should be considered (Logrip et al. 2013; 

Przybycien-Szymanska et al. 2010, 2011; Silva et al. 2009; Van Waes et al. 2011).

At a behavioral level, EtOH consumption, abuse and relapse have been observed to be 

critically modulated by CRF and stress, and there is a high incidence of co-morbidity 

between alcoholism and stress-associated disorders such as anxiety and depression (Boden 

& Fergusson 2011; Haass-Koffler et al. 2014; Lijffijt et al. 2014). Furthermore, abnormally 

high levels of CORT, a condition known as pseudo-Cushing's syndrome (Kirkman & Nelson 

1988), are frequently found in alcoholics. Laboratory animal research has provided support 

for participation of the CRF system in stress-induced changes in EtOH effects and in EtOH-

induced neuroadaptations that are reflected in behavioral changes (Fig. 3). In the following 

sections, we review literature focusing on the involvement of stress, and components of the 

CRF system, in EtOH consumption and the behavioral aspects of EtOH-induced 

neuroadaptation. Tables 1 and 2 list many of the studies in these areas, with Table 1 

providing references, trait information and results for knockout (KO) and transgenic mouse 

studies, and Table 2 providing detailed information for pharmacological studies. We do not 

exhaustively review the literature on the effects of EtOH on CRF-related peptide levels; that 

is beyond the scope of this review. We refer to specific literature, but the reader is referred to 

the tables for details such as animal species, genotype and methods associated with EtOH 

and other drug treatments.

The role of CRF systems in EtOH intake

A large number of studies have supported a role for CRF and CRF-related systems in EtOH 

intake, which has led to considerable interest in the potential of CRF-related 

pharmaceuticals as treatments for alcohol use disorders (Egli 2005; Heilig & Koob 2007; 

Zorrilla et al. 2013). EtOH intake has been examined using multiple procedures, including 

two-bottle choice continuous access, operant self-administration to get at strength of 
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reinforcement and reinstatement of EtOH seeking (discussed in greater detail in the section 

on the role of CRF systems in EtOH-induced neuroadaptation), and limited access ‘drinking 

in the dark’ (DID) procedures to obtain binge-like levels of intake. Papers and findings are 

listed in Tables 1 and 2, and several reviews have covered much of the literature (see reviews 

cited above). We highlight some of the findings here.

Single gene mutant mice

Only four papers had been published using single gene manipulations in mice to examine 

the influence of CRF-related genes on EtOH intake by the time of a 2006 general review of 

EtOH-related genes (Crabbe et al. 2006). Since then, many additional papers have appeared 

(Table 1). In the initial study examining EtOH intake in CRF KO mice, KO mice consumed 

more EtOH than did wild-type (WT) mice in both a 24-h continuous access procedure and a 

limited access procedure (Olive et al. 2003). The opposite phenotype was found in CRF 

overexpression mice that were examined for their continuous access EtOH drinking 

phenotype (Palmer et al. 2004). However, more recently, Kaur et al. (2012) reported reduced 

EtOH intake in CRF KO mice in a binge-like DID study. The opposite findings in CRF KO 

mice could be related to the role of CRF in procedures in which EtOH intake is generally 

lower (Olive et al. 2003) vs. higher (Kaur et al. 2012).

Several studies have examined the role of CRF1 using KO mice, and results have not been 

entirely in agreement. The first study examining EtOH intake in constitutive CRF1 KO mice 

found no initial effect, but reported a long-term increase in continuous access EtOH 

consumption in CRF1 KO mice after repeated stress exposure that was not seen in their WT 

controls (Sillaber et al. 2002). In that report, initial EtOH intake levels were low (∼1 g/kg/24 

h) and stress-induced levels remained relatively low (<4 g/kg/24 h). A more recent paper, 

using the same KO mice, obtained data that are in agreement with those findings (Molander 

et al. 2012). However, other studies have found reduced EtOH intake in constitutive CRF1 

KO mice, specifically when EtOH was offered at higher concentrations (20%) or using a 

DID procedure, and thus, when EtOH intake was generally higher in the WT littermate mice 

(Giardino & Ryabinin 2013; Kaur et al. 2012; Pastor et al. 2011). In addition, also 

inconsistent with Sillaber et al. (2002), are studies in which forced swim or social defeat 

stress-induced increases in EtOH intake have been found to be absent or reduced in CRF1 

KO mice (Molander et al. 2012; Pastor et al. 2011); furthermore, EtOH withdrawal-induced 

increases in EtOH self-administration and intake were not seen in CRF1 KO mice (Chu et al. 
2007; Molander et al. 2012). One difference in the studies that have found reduced intake 

and a lack of stress response is that the KO mice were backcrossed onto the EtOH-preferring 

C57BL/6J mouse strain for several generations. In fact, Molander et al. (2012) also found 

that stress-induced increases in EtOH consumption were lower in a brain-specific CRF1 KO 

that was on a mixed 129S2/Sv × C57BL/6J × SJL strain background. In general, the 

majority of the data suggest that adequate CRF1 function is important for higher levels of 

EtOH intake and for stress-induced changes in EtOH intake.

Because receptor-specific antagonists for CRF2 that can be administered peripherally are not 

available, information about the involvement of CRF2 signaling in EtOH-related phenotypes 

has relied mostly on studies in CRF2 KO mice. In general, data have suggested a modulatory 
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role on the more significant involvement of CRF1 in stress-related responses (Coste et al. 
2000, 2006). The initial study in CRF2 KO mice examined both continuous and limited 

access EtOH drinking. No effect of the mutation was found in the continuous access study. 

The limited access study included 30-min access periods as the EtOH concentration was 

increased, followed by 2-h access periods. A modest difference in intake (KO > WT) was 

found for some concentrations during the 30-min access phase that was not sustained when 

the access period was increased (Sharpe et al. 2005). In a more recent study, a small 

transient reduction in EtOH intake was seen in CRF2 KO mice that appeared to be largely in 

males (Kaur et al. 2012). Therefore, this receptor subtype has not had a sustained effect on 

EtOH consumption in the studies that have been conducted thus far.

Pharmacological studies

Intracerebroventricular administration of CRF has been found to decrease EtOH 

consumption in rats and mice (Bell et al. 1998; Ryabinin et al. 2008; Thorsell et al. 2005), 

which is consistent with reduced EtOH intake in CRF overexpression mice (Palmer et al. 
2004). However, some data suggest non-specific effects on fluid intake (Ryabinin et al. 
2008). Centrally administered CRF has also been found to reinstate EtOH seeking behavior 

(Le et al. 2002), which is consistent with its role as a stressor. Results for the effect of the 

other endogenous CRF1/2 agonist peptide, Ucn1, on EtOH intake have been dependent upon 

brain region, as intra-DR application had no effect, but intra-lateral septum infusion reduced 

both established EtOH intake and the acquisition of EtOH drinking (Ryabinin et al. 2008). 

Overall, the majority of the data appear to indicate that drugs that have combined agonist 

actions at CRF1 and CRF2 receptors reduce EtOH intake (see CRF and Ucn1 entries in Table 

2).

On the other hand, there is a large body of data showing that reduced CRF1 signaling via 

receptor antagonist administration also reduces EtOH intake. As this literature has evolved, 

it has become more apparent that CRF1 antagonists have greater effects when EtOH intake 

levels are high. For example, subcutaneous administration of the CRF1 antagonist, N,N-

bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo [1,5-

a]pyrimidin-7-amine, attenuated elevated levels of EtOH intake seen in alcohol preferring 

(P) rats after dependence induction, while not affecting EtOH intake in non-dependent P rats 

(Gilpin et al. 2008). Similarly, operant responding for EtOH was decreased by several 

different CRF1 (or CRF1/2) antagonists in EtOH-dependent, but not in non-dependent, 

animals (Finn et al. 2007; Funk et al. 2006; Overstreet et al. 2007; Sabino et al. 2006), and 

these drugs tend to reduce binge-like or stress-induced heightened EtOH intake, with less 

consistent effects on more modest levels of intake (Cippitelli et al. 2012; Lowery et al. 2008; 

Lowery-Gionta et al. 2012; Simms et al. 2014). However, not all studies have consistently 

supported this generalization. For example, a significant restraint stress-induced increase in 

EtOH consumption in 129SVEV mice was not blocked by the CRF1 antagonist, R121919 

(Yang et al. 2008), and CP-154,526 reduced intake under both higher and lower intake 

conditions in mice and rats (Hwa et al. 2013). Also, lesioning the CeA, which would be 

expected to affect neurons that are relevant to CRF-related pathways, did not prevent 

heightened levels of EtOH intake seen in C57BL/6J mice after dependence induction 

(Dhaher et al. 2008). Finally, Sharpe and Phillips (2009) showed that the selective CRF2 
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agonist, Ucn3, delivered centrally to non-dependent C57BL/6J mice, reduced 2-h limited 

access 10% EtOH consumption. This study used lickometers to investigate drinking patterns, 

and identified that reduced EtOH drinking by Ucn3 was associated with a change in size of 

the largest drinking bouts. Lowery et al. (2010) also found that ICV infusions of Ucn3 

reduced binge-like EtOH drinking in C57BL/6J mice.

In conclusion, growing evidence from studies using both single gene mutant mice and 

pharmacology indicates that voluntary EtOH intake can be mediated by CRF signaling via 

CRF1. CRF1 appears to play a key role in acquisition of EtOH drinking when high levels of 

intake are achieved via binge-like drinking, genetic predisposition, exposure to high 

concentrations of EtOH or a combination of these conditions. Current literature also 

suggests that the enhancing effects of stress on EtOH drinking are mediated by CRF1, 

although results may be influenced by species, genotype and methodological factors. A 

significant literature supports the view that increased EtOH drinking seen after long-term, 

dependency inducing periods of exposure to EtOH and EtOH-induced negative emotionality 

and anxiety associated with post-dependent states are mediated, at least in part, by CRF1. 

CRF2 appear to play a more minor role.

Effects of EtOH drinking on CRF and related molecules

We have focused on the ability to manipulate EtOH drinking and EtOH-induced 

neuroplasticity by genetically or pharmacologically altering relevant components of the CRF 

system. However, a few comments about the changes in this system induced by EtOH 

drinking are pertinent. A relatively early study examined the effect of different levels of 

voluntary EtOH drinking on brain CRF levels. Wistar rats were classified as low, moderate 

and high intake and then examined for CRF concentration in several brain regions. Rats 

classified as high drinkers had higher non-median eminence hypothalamic CRF 

concentrations, but lower neurointermediate pituitary and pons-medulla CRF concentrations 

(George et al. 1990). It should be noted that the different drinking levels in these Wistar rats 

could have had genetic, environmental or both types of influences as their source. In a more 

recent study, the number of CRF-positive cells in the CeA was higher in adult mice 

immediately after a binge-like EtOH drinking episode (Lowery-Gionta et al. 2012). This 

relationship appears to be altered when EtOH exposure occurs at an earlier, more distant 

time point, as CRF cell counts in the CeA were reduced, rather than increased, in adult rats 

that had a history of adolescent binge drinking (Gilpin et al. 2012), and so was CRF mRNA 

in the BLA (Falco et al. 2009). However, adolescent rats may have a higher basal level of 

CRF in some brain regions, including the CeA, compared with adult rats, which could affect 

the response of this system (Wills et al. 2010).

Some studies have examined the effect of pre-existing genetically-determined differences in 

EtOH preference. When the effect of voluntary EtOH drinking on CRF mRNA levels was 

examined in selectively bred Sardinian alcohol preferring (sP) rats, CRF mRNA levels were 

decreased in the CeA, but not in hypothalamus (Zhou et al. 2013). Furthermore, data for 

individual animals showed a significant negative correlation between intake and CRF mRNA 

level in the amygdala. Of course, it is impossible to compare this outcome to that in the 

oppositely selectively bred non-preferring line, because they will not voluntarily consume 
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much EtOH. However, innate differences in pairs of selected lines can be examined. For 

example, when lines of rats bred for high and low EtOH drinking were compared in the 

EtOH-naïve state, CRF-positive cells and CRF mRNA were significantly lower in the CeA 

of alcohol preferring (P), compared with alcohol non-preferring (NP) rats, but not in the high 

alcohol drinking (HAD), compared with low alcohol drinking (LAD) rats (Hwang et al. 
2004). Thus, the data are inconsistent with regard to levels of these CRF-related peptides as 

predictors of genetically determined tendency to consume EtOH. In addition, several lines of 

rats have been compared for native differences in Ucn1-positive cells in the EWcp, with 

mixed findings; a greater number of Ucn1 cells was found in the preferring line in two of the 

five surveyed pairs; a lower number in one preferring compared with non-preferring; and no 

difference was found in two of the five pairs (Turek et al. 2005). On the other hand, data 

from these rat lines were more consistent in showing a greater number of Ucn1-positive 

projections to the lateral septum in association with EtOH preference (Turek et al. 2005). 

Furthermore, using immunohistochemistry, three sublines of alcohol-preferring rats were 

compared with control Wistar rats for Ucn1-positive cells in the EWcp. The number of 

Ucn1-positive cells was greater in male P, compared with Wistar rats; a similar non-

significant trend was found in female animals (Fonareva et al. 2009). Therefore, there are 

again contradictory findings, with regard to whether number of Ucn1-positive cells serves as 

a marker for differences in genetically determined EtOH preference. Some of this variability 

in results could be related to the heterogeneous nature of the underlying genetic factors for 

EtOH drinking.

Other genetic findings

A few studies have provided evidence of associations of genetic polymorphisms in CRF-

related genes with EtOH drinking phenotypes. The rhesus macaque CRH gene has been 

sequenced and examined for functional variants. One variant (−2232C→G) was shown to 

decrease DNA–protein interactions and decrease sensitivity of the CRH promoter to 

glucocorticoids in an in vitro assay. This variant was also associated with reduced CRF in 

the cerebral spinal fluid, and increased plasma ACTH, under non-stress conditions. It was 

also associated with increased EtOH consumption in adult macaques. The authors state that 

the genetic effect was specifically in macaques that were mother-reared in social groups, as 

opposed to macaques that were first isolate reared by human caregivers and then placed with 

peers from 37 days forward; however, intake data were not presented for the latter group 

(Barr et al. 2008). A single nucleotide polymorphism (SNP) within the rhesus macaque CRH 
promoter (−248C→T) was found to increase DNA–protein interactions and to increase 

EtOH consumption in animals that were isolate-peer reared, but not mother-reared. These 

monkeys also exhibited a larger stress-axis response to social separation stress (Barr et al. 
2009). The authors suggested that effects of mutations may be specific to environmental 

conditions. Thus, for example, some may have effects under social drinking situations and 

others may affect stress-related drinking.

The electroencephalographic response to CRF was examined in P and NP rats as a marker of 

CRF-induced neural activation. P rats exhibited a larger response, compared with NP rats, 

and a lower basal concentration of CRF was found in P rats in several brain regions. These 

results led to the speculation that CRF receptors may be upregulated in P rats and that these 
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differences in CRF neural regulation may contribute to differences in EtOH consumption 

(Ehlers et al. 1992). Subsequently, the finding of lower CRF in P rats was confirmed, but it 

was not replicated in another set of HAD and LAD lines (Hwang et al. 2004). Also, basal 

CRF levels in the CeA of sP rats were higher than in Sardinian non-preferring (sNP) rats 

(Richter et al. 2000; Zhou et al. 2013), a region where it had been found to be lower in P rats 

(Ehlers et al. 1992; Hwang et al. 2004). Furthermore, no difference was found between the 

high EtOH drinking C57BL/6J and EtOH avoiding DBA/2J mouse strains (Hayes et al. 
2005). Therefore, a clear relationship between CRF level and genetically determined level of 

EtOH intake is not apparent. However, differences in innate anxiety level found between the 

P and NP (P > NP) rats, but not between HAD and LAD rats, may reflect variation in the 

specific genes involved in the selection traits across EtOH consumption selected lines and 

also support significant involvement of CRF specifically in anxiety-or stress-related 

drinking. Based on human SNP association analysis, Enoch et al. (2008) suggested that the 

CRF-BP gene (CRHBP) plays a role in stress-related EtOH use. However, a negative, rather 

than positive, correlation was found between level of anxiety-like behavior and CRF level in 

sP and sNP rats. Chen et al. (2010) suggested a role for CRHR1 genetic variation in 

vulnerability to alcohol use disorder, and Treutlein et al. (2006) suggested an association of 

CRHR1 polymorphisms with pattern of alcohol consumption. Additional genetic 

investigations will be needed to substantiate these relationships and identify gene networks 

that are likely to influence complex alcohol-related traits and possibly be population-

specific.

A SNP in the promoter region of the CRF1 gene (Crhr1) of the Marchigian–Sardinian 

preferring (mSP) rat may influence their heightened stress-induced EtOH drinking 

phenotype. This polymorphism results in upregulation of Crhr1 in several brain regions, 

compared with levels seen in control Wistar rats. When these rats were treated with a CRF1 

antagonist, stress-induced reinstatement of EtOH drinking was blocked in mSP, but not in 

Wistar, rats (Hansson et al. 2006). Furthermore, chronic free-choice EtOH drinking was 

associated with downregulation of the CRF1 protein in the amygdala and NAcc (Hansson et 
al. 2007). The authors suggested that heightened levels of CRF1 drive excessive EtOH 

intake, which consequently reduces CRF1 activity.

Because the gene coding for CRF2 (Crhr2) maps to a genetic region associated with EtOH 

consumption, specifically in the inbred P and NP rats, Crhr2 expression and sequence were 

examined and a receptor function assay was performed. Lower levels of Crhr2 expression 

were found in P rats in some brain regions. In addition, a 7 base pair insertion polymorphism 

in the promoter region of the gene was found in the P rat, as well as a coding region 

polymorphism and an amino acid deletion in the 3′ untranslated region. The effect of the 

promoter insertion in vitro was to lower Crhr2 expression, and CRF2 density in the 

amygdala was lower in P, compared with NP rats (Yong et al. 2014). Whether these 

differences directly relate to differences in EtOH consumption between P and NP rats will 

require further investigation.
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The role of CRF systems in EtOH-induced neuroadaptation

Dependence, withdrawal and relapse

One potential consequence of repeated EtOH administration is the development of 

dependence. Dependence can be inferred from certain symptoms that may be seen when 

chronic EtOH is withdrawn. Affective symptoms associated with EtOH withdrawal include 

increased anxiety, dysphoria and depressed mood, symptoms that have been posited to 

involve changes in the stress axis and central CRF-mediated process (Breese et al. 2005a; 

Ciccocioppo et al. 2009; Clapp et al. 2008; Griffin 2014; Koob 2010; Koob et al. 2014; 

Lowery & Thiele 2010; Shalev et al. 2010; Zorrilla et al. 2013). In addition, repeated bouts 

of EtOH exposure and withdrawal have been associated with escalation of EtOH intake (see 

description and history of this model in Vendruscolo & Roberts 2014) and a number of 

studies have explored the involvement of CRF systems in this effect, and in reinstatement of 

EtOH drinking and seeking, as traits relevant to relapse.

Single gene mutant mice studies

Few studies have utilized mutant mice to investigate the role of the CRF system in EtOH 

withdrawal-related effects. When CRF1 KO and WT mice were made dependent on EtOH 

using a liquid diet, the KO mice did not exhibit withdrawal-induced increased EtOH 

seeking, whereas WT mice did; KO and WT mice were similar in EtOH seeking in the non-

dependent state (Chu et al. 2007). The same paper reported that the CRF1 antagonist, 

antalarmin, blocked withdrawal-induced increases in EtOH seeking in C57BL/6J 

background strain mice made dependent using EtOH vapor inhalation. These data support 

CRF1 involvement in dependence-induced increases in EtOH seeking. We were not able to 

find additional studies examining effects in CRF-related KO mice.

Pharmacological studies

A number of studies have investigated the role of CRF and its related peptides in 

withdrawal-induced increases in EtOH drinking or self-administration using 

pharmacological manipulations. Data collected in C57BL/6J mice, in which a CRF1/2 

antagonist was microinjected into the CeA, showed a decrease in EtOH withdrawal-

associated EtOH intake in the absence of an effect on non-dependent mice (Finn et al. 2007). 

A larger number of studies have examined the specific involvement of CRF1 and there is 

general agreement that CRF1 antagonists attenuate withdrawal-associated increases in EtOH 

drinking/self-administration (Chu et al. 2007; Funk et al. 2007; Gehlert et al. 2007; 

Overstreet et al. 2007; Roberto et al. 2010; Sabino et al. 2006). In most cases, the CRF1 

antagonist effects did not generalize to non-dependent animals; however, in one study that 

examined EtOH intake during operant sessions, rather than number of reinforcers, 

attenuating effects of R121919 were seen in both dependent and non-dependent rats 

(Roberto et al. 2010). It is worth mentioning, however, that in this study, repeated R121919 

treatment was given 24 h before each operant testing session.

A few studies have examined the role of CRF2. One study examined EtOH withdrawal-

associated increased self-administration after intra-CeA infusion of Ucn3 and attenuation 

was found (Funk & Koob 2007); however, EtOH self-administration in the non-dependent 
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rats in this study was increased by intra-CeA Ucn3 infusion. Others have found decreased 

EtOH intake with ICV infusion of Ucn3 in C57BL/6J mice using DID procedures in which 

higher levels of EtOH intake are induced (Lowery et al. 2010; Sharpe & Phillips 2009). 

Therefore, while studies on KO mice do not appear to support a role for CRF2, these 

pharmacological studies suggest that both CRF1 and CRF2 may influence higher levels of 

EtOH intake.

In mice made dependent using EtOH liquid diet, the non-selective CRF receptor antagonist 

α-helical CRF(9–41), given ICV, blocked the anxiogenic-like effects of EtOH withdrawal on 

the elevated plus maze, but did not alter other withdrawal symptoms, including tail stiffness, 

tremor or ventromedial distal flexion (Baldwin et al. 1991). The attenuating effect of CRF 

receptor antagonism on the anxiogenic-like response has been replicated (Valdez et al. 
2003). Further, when CRF was microinjected into several brain regions, but not others (see 

Table 2), dose-dependent sensitization of an EtOH withdrawal-induced decrease in social 

interaction was seen (Huang et al. 2010), which has been posited to be an anxiety-like 

behavior (File 1980). Examination of the brain regions that supported these effects suggests 

that the extended amygdala is involved in withdrawal-associated anxiogenic behaviors. 

Several additional studies have used the social interaction test, as a behavioral index of 

anxiety-related behavior and have found that CRF1 receptor-selective antagonists given 

during EtOH withdrawal can blunt anxiety-like behavior (Breese et al. 2004, 2005b; Knapp 

et al. 2004; Overstreet et al. 2007; Sommer et al. 2008; Wills et al. 2009). Furthermore, the 

CRF1-selective antagonist, SSR125543, blocked CRF- and stressor-sensitized withdrawal-

induced anxiety-like behavior (Breese et al. 2005b; Huang et al. 2010; Knapp et al. 2011a). 

However, the endogenous CRF2-selective agonist, Ucn3, given ICV or into several brain 

regions, did not affect EtOH withdrawal-associated anxiogenic effects (Huang et al. 2010), 

nor did the CRF2 antagonist antisauvagine-30 (Overstreet et al. 2004). Taken together, these 

results suggest that CRF1 plays a role in withdrawal-induced anxiogenic behaviors.

The role of CRF signaling has also been extensively studied in the context of behaviors 

thought to model relapse; in particular, reinstatement of EtOH seeking/drinking behavior in 

rodents. Corticotropin-releasing factor signaling involvement in escalation of use after 

periods of deprivation has also been examined. Most commonly, reinstatement studies have 

used operant methods in which animals are trained to perform an operant response to gain 

access to a reservoir or sipper containing EtOH, and then, once stable responding is 

achieved, extinction procedures are used that lead to low levels of the behavior that 

previously resulted in EtOH access. Post-extinction, active drug taking or seeking behavior 

(responding in the absence of drug delivery) can be re-established by drug priming, 

presentation of cues that were previously associated with drug availability or application of a 

stressor. In the case of EtOH, CRF signaling appears to play an important role in those 

mechanisms that particularly mediate stress-induced reinstatement, but not in those that 

facilitate drug prime or cue/context-induced reinstatement. For example, CRF1 antagonists 

selectively reduce footshock-induced reinstatement of responding for EtOH (Le et al. 2000; 

Liu & Weiss 2002), an effect that appears to be especially prominent in EtOH-dependent or 

genetically selected EtOH preferring rats and is mediated by extra-hypothalamic 

mechanisms (Gehlert et al. 2007; Le et al. 2000; Liu & Weiss 2002). In addition, CRF 

signaling via CRF1 modulates pharmacologically-induced stress effects on EtOH 
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reinstatement; thus, stress-axis activation induced by yohimbine, an α2 adrenoreceptor 

antagonist that activates the ascending noradrenaline system and increases anxiety-like 

responses, reinstates responding for EtOH. This reinstatement is prevented by CRF and 

CRF1 antagonism (Le et al. 2000, 2002; Marinelli et al. 2007), which appears to be mediated 

by CRF receptors in the median raphe nucleus (Le et al. 2013). On the other hand, the NAcc 

appears to be an important brain structure involved in the role of CRF in stress-induced 

escalation of EtOH intake during periods of deprivation. For example, when EtOH-

preferring P rats that have a history of EtOH drinking are re-introduced to EtOH, intake can 

be increased as a consequence of exposure to restraint stress administered during a period of 

EtOH deprivation; this effect was prevented by intra-NAcc injection of a CRF1 antagonist 

(Knapp et al. 2011a). Furthermore, increased EtOH intake can be induced by intra-NAcc 

administration of CRF during the deprivation period (Knapp et al. 2011a). For a review of 

additional research examining stress-induced reinstatement of drug seeking and the role of 

CRF (among other neuropeptides), see Shalev et al. (2010).

Psychomotor sensitization

The body of data examining the role of CRF-related systems in behavioral sensitization to 

EtOH is small. However, data from both single gene KO mice and pharmacology have 

consistently indicated that CRF and CRF1, but not CRF2 and Ucn1, play important roles in 

the neuroadaptations that underlie the development and expression of psychomotor 

sensitization to EtOH (Fee et al. 2007; Pastor et al. 2008, 2012; Phillips et al. 1997). 

Repeated restraint stress was previously shown to produce psychomotor sensitization to 

EtOH through a mechanism that involves CORT and GR (Roberts et al. 1995). More recent 

results from our laboratory and other research groups have shown a key role of CRF and 

CRF1 in EtOH-induced psychomotor sensitization, even in the absence of an externally 

applied stressor (Fee et al. 2007; Pastor et al. 2008, 2012). Absent EtOH sensitization in 

CRF1 mice was also associated with a blunted endocrine response (Pastor et al. 2008), 

suggesting an involvement of the HPA axis. Repeated injections of CORT sensitizes the 

locomotor-stimulant response to EtOH; however, the doses of systemic CORT necessary to 

induce sensitization resulted in plasma CORT levels notably higher than those produced by a 

sensitizing EtOH treatment (Pastor et al. 2012). Participation of hypothalamic CRF and 

CORT, therefore, appears to be necessary, but not sufficient, to explain the role of CRF/

CRF1 in the acquisition of sensitization to EtOH. In addition, the CORT synthesis inhibitor 

metyrapone prevents the development, but not the expression, of EtOH sensitization 

(Roberts et al. 1995). Furthermore, our data are in agreement with previous findings 

showing that, although EtOH- or stress-induced changes in CORT can be necessary to 

mediate acquisition of EtOH sensitization, no direct temporal correlation between plasma 

CORT levels and behavior has been seen (Pastor et al. 2012; Roberts et al. 1995). In 

summary, a CRF-dependent mechanism, via CRF1, involving the HPA axis has been 

proposed for acquisition of sensitization, whereas an extra-hypothalamic CRF/CRF1 

mechanism has been suggested for expression of EtOH sensitization (Pastor et al. 2008, 

2012).
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Concluding remarks and future perspectives: from preclinical to clinical

The preclinical investigation of CRF receptors and ligands in stress vulnerability, EtOH 

dependence and relapse is among the most active research areas focused on the 

pharmacology and genetics of EtOH-induced behavior. This review has summarized 

evidence for CRF-related biological determinants that mediate stress- and EtOH-induced 

behavioral changes. Robust scientific evidence suggests that CRF and CRF1 play seminal 

roles in stress-induced changes in EtOH consumption, binge-like EtOH intake, post-

dependent heightened drinking, genetic predisposition, negative emotionality and anxiety 

and stress- and EtOH-induced behavioral sensitization. The field would benefit from 

additional research aimed at identifying the specific molecular determinants of EtOH-

induced CRF1 activation and CRF1-mediated neuroplasticity that contributes to changes in 

EtOH responses. In an elegant study combining pharmacological and KO approaches, Bajo 

et al. (2008) showed that EtOH induces the release of GABA in the CeA via a mechanism 

that depends on a CRF1-initiated mechanism, which requires participation of protein kinase 

C (PKC) epsilon. Mutant mice lacking PKC epsilon showed a stress- and EtOH-induced 

phenotypic profile comparable to that found in CRF1 KO mice (Table 1), characterized by 

reduced anxiety-like behavior and EtOH consumption (Hodge et al. 1999, 2002; Olive et al. 
2000). Additional research exploring whether this mechanism is also involved in CRF1-

induced effects in other brain regions would further define the relevant brain circuitry. As 

recently reviewed by Haass-Koffler and Bartlett (2012), CRF plays an important role in 

facilitating acquisition and maintenance of plasticity in the VTA and amygdala, particularly 

via enhanced glutamatergic activation and decreased GABA-mediated inhibition. Further 

research exploring the mechanisms supporting CRF1-mediated plasticity would also be 

extremely relevant in this field.

Given its clinical relevance and the notion that CRF-mediated neuroplasticity in the 

mesocorticolimbic neuronal network may contribute to stress vulnerability, loss of control 

over EtOH consumption and relapse, an increased and particular focus should be placed on 

exploring strategies to block experiencing the effects of such neuroadaptations. This is 

sometimes referred to as the expression of the neuroadaptive effect. Blocking or reducing the 

expression of such neuroplastic changes could include not only pharmacological strategies, 

but also behavioral strategies. Solinas et al. (2008) reported that environmental enrichment 

can reduce some of the neurochemical and behavioral effects of repeated administrations of 

cocaine, and others have indicated that this type of manipulation can reduce stress levels per 
se and also reduce elevated stress hormones associated with morphine or amphetamine 

administration (Ravenelle et al. 2013; Xu et al. 2014). Investigating whether environmental 

enrichment, such as increased physical exercise (Segat et al. 2014), might alter behavioral 

and neurochemical indicators of CRF-mediated neuroplasticity associated with a history of 

EtOH administration may be a valuable future line of research. Clearly, preventing all 

exposure to EtOH is almost impossible, so focusing on the acquisition of neuroadaptations 

may be less fruitful from the perspective of treatment; however, it should be mentioned that 

recent findings for cocaine suggest that loss of environmental enrichment could increase 

vulnerability to drug use (Nader et al. 2012), and thus increase the probability of drug-

induced neuroplasticity.
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In view of some recent findings (reviewed by Zorrilla et al. 2014), additional preclinical 

research is needed on genetic factors that contribute to differential effectiveness of CRF1 

antagonists (Heilig et al. 2010; Sinha 2008). Further, additional explorations are needed to 

substantiate data suggesting that gene polymorphisms may play a role in risk for EtOH use. 

For example, Crh and Crhr1 polymorphisms have been associated with increased active 

responses to stress in animals selectively bred for high preference for EtOH (Ayanwuyi et al. 
2013; Cippitelli et al. 2014) and with increased EtOH consumption in monkeys exposed to 

early life stress (Barr et al. 2009). Polymorphisms in human CRH1 and CRHBP have also 

been associated with different aspects of alcohol use and dependence (Chen et al. 2010; 

Enoch et al. 2008; Treutlein et al. 2006).

Finally, based on promising results for CRF1 antagonist effects on EtOH consumption in 

animal models, there has been considerable interest in the potential for these drugs as 

pharmacotherapeutics for alcohol use disorders. Zorrilla et al. (2013) suggest that such drugs 

have promise, in part, because their anxiolytic-like actions do not appear to be susceptible to 

tolerance (Zorrilla & Koob 2004), they do not appear to have sedative effects or adverse 

effects on motor coordination nor adversely affect attention or learning (Hogan et al. 2005; 

Zorrilla & Koob 2004; Zorrilla et al. 2002), and they may have little addiction liability 

(Broadbear et al. 2002; Sahuque et al. 2006; Stinus et al. 2005). Clinical trials began about 

10 years ago (December 2004) with several CRF1 antagonists. Traits being examined have 

included major depression, irritable bowel syndrome, social anxiety disorder and post-

traumatic stress disorder. None appear to have completed a Phase III trial. Development of 

one antagonist was discontinued due to instances of elevated liver enzymes, others because 

of lack of efficacy in double-blind, placebo-controlled trials for major depression (Koob & 

Zorrilla 2012; Zorrilla & Koob 2010). Koob and Zorrilla (2012) have provided the 

revisionist view that CRF1 antagonists may be most efficacious for psychiatric disorders in 

which stress is a more dynamic than chronic factor, including addiction. Perhaps, an 

alternative to consider is a drug(s) that has indirect effects on the CRF system. For example, 

in one study, the reduction in EtOH intake by the opioid receptor antagonist, naltrexone, was 

associated with blockade of CRF expression in the PVN induced by EtOH drinking (Oliva & 

Manzanares 2007). In another study, the effect of combined naltrexone and the CRF1 

antagonist, CP154526, was examined on intermittent access EtOH drinking in C57BL/6J 

mice, when infused into the DR. Each drug was effective, at least transiently, when given 

alone, but an increased effect was not seen when the drugs were given together (Hwa et al. 
2014). However, this study used an intermittent access EtOH protocol that did not 

specifically include evaluation of the contribution of cue/context effects, which could be 

important. Previous data indicate that opioid antagonists not only reduce EtOH intake 

(Méndez & Morales-Mulia 2008), but also reduce cue-dependent reinstatement of EtOH 

seeking (Liu & Weiss 2002). Context-dependent EtOH reinstatement has also been seen to 

be mediated by opioid receptors, in particular, BLA opioid receptors (Burattini et al. 2006; 

Marinelli et al. 2010). These pre-clinical data are particularly relevant, as human data 

indicate that opioid antagonism increases duration of abstinence periods (Maisel et al. 2013; 

O'Malley et al. 2007), which might be an indicator of opioid-mediated attenuation of the 

relapse-triggering strength of context and other conditioned stimuli. A combined strategy 

that reduces vulnerability to both stress-induced and conditioned stimuli-induced relapse 
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could be important to consider. Collectively, we agree with many other investigators that the 

CRF system plays a remarkably important role in the etiology and maintenance of addiction, 

and particularly in the effects of excessive use. The need for continued research directed at 

identifying ways to reverse or inhibit the effect of changes in this system on active and 

relapsing use is supported by the existing findings.
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Figure 1. Binding relationships of CRF-family peptides and their targets
CRF binds with high affinity to CRF1 and CRF-BP and with lower affinity to CRF2. Ucn1 

binds with high affinity to CRF1, CRF2 and CRF-BP. Ucn2 and Ucn3 are selective for CRF2 

in all species; Ucn2 has an affinity for CRF-BP in certain species. Those with the highest 

affinity for the binding target are placed closest to that target while those with the lowest 

affinity are placed farthest away. The locations shown for CRF1, CRF2 and CRF-BP are not 

inclusive, but are those most relevant to this review. For additional information, see De 

Souza (1995); Hauger et al. (2006); Huising et al. (2008); Kühne et al. (2012).

Phillips et al. Page 34

Genes Brain Behav. Author manuscript; available in PMC 2016 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Diagram of central CRF-related neurocircuitry and interactions with other 
neurotransmitter systems
In this figure, we concentrate on the CRF neurocircuitry that we discuss in this article in 

relationship to EtOH drinking and neuroadaptation-related phenotypes; however, not all 

potentially relevant regions and pathways are represented. Colored circles within each brain 

region denote the CRF-related receptor or CRF-BP that is found in that region, with colors 

defined in the figure. Lines and arrows indicate the projections from one specific brain 

region to another, with the color denoting the primary transmitter or peptide. CRF 

projection, solid dark blue line and arrow; speculated CRF projections, dashed dark blue line 

and arrow; DA projection, solid dark green line and arrow; GABA projection, solid red line 

and arrow; glutamate projection, solid green line and arrow; norepinephrine projection, solid 

brown line and arrow; serotonin projection, solid yellow line and arrow; Ucn1 projection, 

solid light blue line and arrow. Brain regions: BLA, basolateral nucleus of the amygdala; 

HIPP, hippocampus; LH, lateral hypothalamus; LS, lateral septum; NTS, nucleus of the 

solitary tract; PFC, prefrontal cortex;. * denotes that there are multiple divisions within this 

region that contain varying levels of each of the noted binding targets. These subdivisions 

may inferentially alter the roles CRF plays in EtOH-related behaviors. For additional 

information, see Ahima et al. (1991); Bittencourt et al. (1999); Brown (1986); Cowen et al. 
(2004); Duvarci and Pare (2014); George and Koob (2010); Gilpin (2012); Gray and 

Magnuson (1992); Haass-Koffler and Bartlett (2012); Handa and Weiser (2014); Hauger et 
al. (2006); Justice et al. (2008); Korosi et al. (2006); Kühne et al. (2012); Lu and Richardson 

(2014); Myers et al. (2014); Pitts et al. (2009); Potter et al. (1992); Radley (2012); Reul and 

Holsboer (2002); Reyes et al. (2008); Ryabinin and Weitemier (2006); Silberman and 

Winder (2013); Silberman et al. (2013); Sinha (2008); Van Pett et al. (2000); Wise and 

Morales (2010).
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Figure 3. The HPA axis and central CRF processes in EtOH-induced neuroadaptations
EtOH activates the HPA axis and induces a well-known cascade of events: CRF is released 

from the hypothalamus and binds to CRF1 in the anterior pituitary, resulting in ACTH 

release; ACTH receptor (ACTH-R) activation results in CORT release from the adrenal 

cortex. Hypothalamic GR activation reduces CRF release via a negative feedback loop. 

CORT also regulates an extra-hypothalamic positive regulatory mechanism that increases 

CRF activity. GR activation plays a role in EtOH-induced neuroadaptation, with a role for 

long-lasting changes in hypothalamic and extra-hypothalamic structures.
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Table 1
Studies of EtOH drinking and neuroadaptation in KO and transgenic mice

Gene Reference Sex/background Trait Results

CRF Olive et al. 
(2003)

129S2/SvPas × C57BL/6J EtOH drinking; two-bottle 
choice, 23 h/day for 16 days 
(2–10% EtOH); or 2 h choice 
(10% EtOH) under 22 h/day 
fluid restriction for 3 days; 
EtOH-induced conditioned 
place preference for four 
EtOH conditioning trials (2 
or 3 g/kg EtOH)

CRF KO mice consumed 
more EtOH than WT control 
mice in both 23 and 2 h 
access conditions. The 
conditioned rewarding effect 
of 2 g/kg EtOH was absent in 
KO mice, but present in WT. 
The genotypes showed 
equivalent conditioned 
rewarding effects of 3 g/kg 
EtOH

CRF Kaur et al. 
(2012)

129S2/SvPas × C57BL/6J; 
male and female

EtOH drinking; single-bottle 
DID 2 h/day for 3 days, then 
4 h/day on day 4 (20% 
EtOH)

CRF KO mice had reduced 
EtOH intake and BEC, 
compared with WT controls

CRF Pastor et al. 
(2012)

129Sv/J × C57BL/6J EtOH-induced locomotor 
sensitization; IP 2.5 g/kg 
EtOH once daily for 10 days, 
then IP 1.5 g/kg EtOH 
challenge and locomotor test; 
BEC and CORT levels

CRF KO mice did not develop 
EtOH-induced locomotor 
sensitization, whereas WT 
mice did; CRF KO mice had 
drastically reduced CORT 
plasma levels, compared with 
WT controls. BEC levels did 
not differ

CRF overexpression transgenic Palmer et 
al. (2004)

C57BL/6J × SJL EtOH drinking; two-bottle 
choice continuous access for 
16 days (3–20% EtOH)

Transgenic mice consumed 
significantly less EtOH than 
their non-transgenic 
littermates. Older transgenic 
mice drank less EtOH than 
younger transgenic mice

CRF1 Sillaber et 
al. (2002)

129/SvJ × 129/Ola × CD1; 
male

EtOH drinking; two-bottle 
choice continuous access (2–
8% EtOH for 18 days; then 
8% EtOH for up to 9 
months); exposure to swim 
and social defeat stress at 2 
and 3 months

There was no initial 
difference in EtOH 
consumption between KO and 
WT mice; KO mice exposed 
to stress at 2 and 3 months 
consumed more EtOH than 
WT mice at 4–9 months. 
There was no stress effect on 
WT mice

CRF1 Nie et al. 
(2004)

C57BL/6J × 129Sv GABA neurotransmission; 
brain slice electrophysiology

CRF (100 nM) or EtOH (44 
mM) did not enhance GABA-
mediated neurotransmission 
in the CeA in CRF1 KO mice, 
but did in WT mice

CRF1 Chu et al. 
(2007)

129/Ola × CD1 EtOH self-administration 
training then EtOH liquid 
diet for 14 days (2–4% 
EtOH); EtOH WD effects on 
operant EtOH self-
administration for 10 
subsequent days

CRF1 KO mice did not 
display EtOH WD-induced 
increases in EtOH self-
administration, but WT mice 
did

CRF1 Pastor et al. 
(2008)

129SV/J × C57BL/6J EtOH-induced locomotor 
sensitization; IP 2.5 g/kg 
EtOH once daily for 10 days, 
then IP 1.5 g/kg EtOH 
challenge and locomotor test; 
BEC and CORT levels

CRF1 KO mice did not show 
the EtOH-induced locomotor 
sensitization seen in WT 
mice, and had a blunted 
CORT response to EtOH. 
BEC levels did not differ

CRF1 Pastor et al. 
(2011)

129SV/J × C57BL/6J EtOH drinking; two-bottle 
choice continuous access for 
16 days (3–20% EtOH); in a 
separate study, two-bottle 
intermittent access for 47 
days (3–10% EtOH, and 21 

EtOH intake (20% EtOH 
concentration only) was lower 
in CRF1 KO mice compared 
with WT during continuous 
access; repeated swim stress, 
but not acute swim stress, 
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Gene Reference Sex/background Trait Results

h/day); swim stress effects 
on EtOH drinking

resulted in higher levels of 21 
h/day EtOH consumption in 
WT mice, but not CRF1 KO 
mice

CRF1 Molander et 
al. (2012)

129/SvJ × 129/Ola × CD1; 
male

EtOH drinking; two-bottle 
choice continuous access for 
∼5 months (2–8% EtOH); 
EtOH vapor (four cycles of 
16 h/day exposure); swim 
and social defeat stress 
effects on EtOH drinking

There was no initial 
difference in EtOH 
consumption between KO and 
WT mice; CRF1 KO mice 
displayed greater social 
defeat-induced, but not forced 
swim stress-induced, 
increased EtOH intake, as 
well as greater EtOH WD-
induced increases in EtOH 
intake, compared with WT 
controls

CRF1 Kaur et al. 
(2012)

129/Ola × CD1; male and 
female

EtOH drinking; single-bottle 
DID 2 h/day for 3 days, then 
4 h/day on day 4 (20% 
EtOH)

CRF1 KO mice had lower 
EtOH intake and BEC, 
compared with WT mice

CRF1 Giardino 
and 
Ryabinin 
(2013)

129/Ola × CD1 
backcrossed to C57BL/6J

EtOH drinking; two-bottle 
DID 2 h/day for 3 days, then 
4 h/day on day 4 (15% 
EtOH); water and food 
intake

EtOH intake was lower in 
CRF1 KO mice, compared 
with WT mice; water intake 
and total caloric intake were 
also lower

CRF1
NestinCre Molander et 

al. (2012)
129S2/Sv × SJL × 
C57BL/6J

EtOH drinking; two-bottle 
choice continuous access for 
∼5 months (2–8% EtOH); 
EtOH vapor (four cycles of 
16 h/day exposure); swim 
and social defeat stress 
effects on EtOH drinking

There was no initial 
difference in EtOH 
consumption between 
CRF1

NestinCre KO and WT 
mice. Stress-induced 
increases in EtOH 
consumption were lower in 
CRF1

NestinCre KO, compared 
with controls, and 
CRF1

NestinCre KO mice did not 
display EtOH WD-induced 
increases in EtOH intake, 
whereas controls did

CRF2 Nie et al. 
(2004)

C57BL/6J × 129 GABA neurotransmission; 
brain slice electrophysiology

CRF (100 nM) and EtOH (44 
mM) each enhanced GABA-
mediated neurotransmission 
in the CeA in both WT and 
CRF2 KO mice

CRF2 Sharpe et al. 
(2005)

129X1/SvJ × C57BL/6J EtOH drinking; two-bottle 
choice continuous access for 
16 days (3–20% EtOH); in a 
separate study, single-bottle 
DID (0.6–10% EtOH; 30 
min/day for first 14 days and 
then 2 h/day for 6 days at 
10% EtOH)

EtOH consumption was 
slightly reduced in CRF2 

mice, compared with WT 
littermates, at 7.5% and 10% 
concentrations, during limited 
access only

CRF2 Giardino et 
al. (2011)

129X1/SvJ × C57BL/6J EtOH-induced conditioned 
place preference (IP 2 g/kg 
EtOH for 4 EtOH 
conditioning trials)

The conditioned rewarding 
effect of EtOH was absent in 
CRF2 KO mice, compared 
with WT

CRF2 Kaur et al. 
(2012)

129X1/SvJ × C57BL/6J; 
male and female

EtOH drinking; single-bottle 
DID 2 h/day for 3 days, then 
4 h/day on day 4 (20% 
EtOH)

CRF2 KO mice had slightly 
reduced EtOH intake on the 
first day, compared with WT 
mice; this difference was not 
sustained on subsequent days 
and not accompanied by 
differences in BEC

CRF1/2 Pastor et al. 
(2008)

C57BL/6J × 129SV/J EtOH-induced locomotor 
sensitization; IP 2.5 g/kg 
EtOH once daily for 10 days, 
then IP 1.5 g/kg EtOH 

CRF1/2 KO mice did not show 
the EtOH-induced locomotor 
sensitization seen in WT mice 
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Gene Reference Sex/background Trait Results

challenge and locomotor test; 
BEC and CORT levels

and had a blunted CORT 
response to EtOH. BEC levels 
did not differ

CRF1/2 Pastor et al. 
(2011)

C57BL/6J × 129SV/J EtOH drinking; two-bottle 
choice for 47 days (3–10% 
EtOH, 21 h/day); swim stress 
effects on EtOH drinking

Repeated swim stress, but not 
acute swim stress, resulted in 
higher levels of EtOH 
consumption in WT, but not 
in CRF1/2 KO mice.

Ucn1 Pastor et al. 
(2008)

C57BL/6J × 129SV/J EtOH-induced locomotor 
sensitization; IP 2.5 g/kg 
EtOH once daily for 10 days, 
then IP 1.5 g/kg EtOH 
challenge and locomotor test

Ucn1 KO mice displayed 
normal EtOH-induced 
locomotor sensitization

Ucn1 Giardino et 
al. (2011)

129X1/SvJ × C57BL/6J EtOH drinking; two-bottle 
choice continuous access for 
16 days (3–10% EtOH)

Ucn1 KO mice consumed less 
of a 6%, but not 3% or 10%, 
solution, compared with WT 
mice; KO mice showed 
reduced preference for both 
the 6% and 10% EtOH 
concentrations, compared 
with WT mice

Ucn1 Giardino et 
al. (2011)

129X1/SvJ × C57BL/6J EtOH-induced conditioned 
place preference and 
aversion (IP 2 g/kg EtOH for 
four EtOH conditioning 
trials)

The conditioned rewarding 
effect of EtOH was absent in 
Ucn1 KO mice, compared 
with WT; sensitivity to the 
conditioned aversive effect of 
EtOH was equivalent in the 
KO and WT mice

Ucn1 Kaur et al. 
(2012)

129X1/SvJ × C57BL/6J; 
male and female

EtOH drinking; single-bottle 
DID 2 h/day for 3 days, then 
4 h/day on day 4 (20% 
EtOH)

Ucn1 KO mice did not differ 
from WT mice in EtOH 
intake or BEC

BEC, blood ethanol concentration; WD, withdrawal.
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ra
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at
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ra
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m
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at
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m
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 C
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 d
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; d
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 m
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 p
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ra
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 d

ri
nk

in
g;

 tw
o-

bo
ttl

e 
ch

oi
ce

 
co

nt
in

uo
us

 a
cc

es
s 

fo
r 

15
 d
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ra
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