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Abstract

The results of many studies support the influence of the corticotropin-releasing factor (CRF)
system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the
addiction process. This review summarizes the preclinical data in this area after first providing an
overview of the components of the CRF system. This complex system involves hypothalamic and
extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of
stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and
targets make up this system and show differences in their involvement in EtOH drinking and in the
effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches
paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF4) in
EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking
during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human
primates and humans have provided some evidence of associations of genetic polymorphisms in
CRF-related genes with EtOH drinking, although additional data are needed. These results suggest
that CRF4 antagonists have potential as pharmacotherapeutics for alcohol use disorders. However,
given the broad and important role of these receptors in adaptation to environmental and other
challenges, full antagonist effects may be too profound and consideration should be given to
treatments with modulatory effects.
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Interest in stress and stress-associated pathways for their roles in alcohol (ethanol, EtOH)
use and related symptoms has a long history. The focus has evolved over time from
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examination of behavioral effects of stressors on EtOH-associated traits and effects of EtOH
on stress-axis measures, such as corticosterone (CORT) and adrenocorticotropin hormone
(ACTH) levels, to investigation of the relevance of central and peripheral peptides and
receptors. In the last decade, a number of excellent reviews have described much of this
literature and have influenced the authors' perspectives (Allen ef a/. 2011; Armario 2010;
Burke & Miczek 2014; Ciccocioppo et al. 2009; Clapp et al. 2008; Crabbe et al. 2006;
Gilpin 2012; Griffin 2014; Heilig & Koob 2007; Heilig et a/. 2010; Koob 2013; Leggio et a/.
2010; Lowery & Thiele 2010; Lu & Richardson 2014; Martin-Fardon et al. 2010; Rivier
2014; Roberto et al. 2012; Ryabinin & Weitemier 2006; Ryabinin et al. 2012; Shalev et al.
2010; Silberman et al. 2009; Sommer & Saavedra 2008; Spanagel et al. 2014; Sprow &
Thiele 2012; Thiele 2012; Weiss et al. 2001; Wong & Schumann 2012; Zorrilla et al. 2013,
2014). Because there is already an excellent, recent literature in this area, we do not
comprehensively repeat this information in the current review. Rather, this article reviews the
preclinical literature investigating the importance of the corticotropin-releasing factor (CRF)
system specifically in EtOH consumption and neuroadaptation-related behaviors. We also
include comments on pertinent human data and suggest future perspectives.

The CRF System

Corticotropin-releasing factor has also been known as corticotropin-releasing hormone or
CRH and is a 41-amino acid neuropeptide critically involved in the regulation of
neuroendocrine and behavioral responses to stress. An intricate CRF-mediated system,
involving hypothalamic and extra-hypothalamic mechanisms, regulates peripheral and
central actions that allow for preparation and adaptation to environmental challenges or
stressors (Bale & Vale 2004; de Kloet 2013; Hauger et al. 2006). The seminal work of Vale
and colleagues identified CRF as the primary molecule responsible for the activation of this
neuroendocrine stress cascade, the hypothalamic—pituitary—adrenal (HPA) axis (Bale &
Chen 2012; Rivier & Vale 1983a,1983b; Rivier et al. 1982; Spiess et al. 1981; Swanson et al.
1983; Vale et al. 1981). Activation of the HPA axis is triggered by neurons of the medial
dorsal parvocellular region of the paraventricular nucleus (PVN) of the hypothalamus
(Armario 2006, 2010; Herman et a/. 2003). This region is rich in CRF and other
neuropeptides, such as vasopressin (arginine-vasopressin; AVP). Although the role of AVP
in activating the HPA axis per se appears to be limited, AVP can significantly increase the
effects of CRF (Rivier & Vale 1983a,1983b; Sawchenko et a/. 1984; Vale ef al. 1981, 1983).

Paraventricular nucleus neurons release CRF at the level of the median eminence, inducing
(via the hypophyseal portal system) the release of ACTH by corticotrope cells of the anterior
pituitary. In turn, ACTH activates the secretion of the glucocorticoid, CORT (cortisol in
humans) from the zona fasciculata of the adrenal cortex. Corticosterone plays an important
role in regulating a number of physiological functions and modulates CRF signaling via a
hypothalamic negative feedback mechanism that decreases CRF-mediated HPA axis
activation; CORT also regulates an extra-hypothalamic positive regulatory mechanism that
increases CRF activity (Bale & Vale 2004; Shepard et a/. 2006). In the mammalian brain,
CRF is identified in the PVN, but high levels of CRF are also found outside of the
hypothalamus in structures such as the central nucleus of the amygdala (CeA), bed nucleus
of the stria terminalis (BNST), hippocampus, thalamus, midbrain and locus coeruleus
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(Merchenthaler et al. 1982, 1984; Morin et al. 1999; Steckler & Holshoer 1999; Swanson et
al. 1983). Glucocorticoid-induced increases in CRF activity have been particularly well
characterized in the CeA and BNST (Shepard et al. 2006; Tran & Greenwood-Van Meerveld
2012). The extra-hypothalamic, neuroregulatory actions of CRF contribute to the integration
of endocrine, sympathetic, behavioral and cognitive responses to stress, and are particularly
involved in the emotional component of stress (Gilpin 2012; Hauger et al. 2006; Miiller et al.
2003; Walker & Davis 2008; Walker et al. 2009). Although stressors initiate a series of CRF-
mediated neuronal responses that can be beneficial and adaptive, dysregulation of CRF
systems can be deleterious, and has been linked to a wide range of disorders including
anxiety, depression, obsessive-compulsive disorder, post-traumatic stress disorder and
addiction (Cador et al. 1993; Cole et al. 1990; Haass-Koffler & Bartlett 2012; Heilig & Egli
2006; Koob & Kreek 2007; Koob & Le Moal 2001; Sarnyai et al. 2001).

CRF system endogenous ligands, binding targets and pathways

Figure 1 summarizes the endogenous ligands, targets and target distribution, and illustrates
the affinity of each CRF family neuropeptide for each CRF-related binding target. CRF
actions are exerted through two Gs-protein coupled receptors, CRF type-1 (CRF7) and
type-2 (CRF5), which share about 70% amino acid sequence identity (Bale & Vale 2004;
Hauger et al. 2006). Corticotropin-releasing factor shows greater affinity for CRF; (Herman
et al. 2003; Vaughan ef al. 1995) and CRF-initiated activation of the HPA axis is mediated
by CRF1 (Armario 2006; Bale & Vale 2004). Corticotropin-releasing factor type-1
expression is found in many brain regions (Justice et al. 2008; Korosi et al. 2006, 2007,
Kiihne et al. 2012; Van Pett et al. 2000). In the cortex and hippocampus, CRFq is present on
glutamatergic neurons, whereas CRF; is found on y-aminobutyric acid (GABA) neurons in
the striatum (including the nucleus accumbens; NAcc) and dopamine (DA) neurons in the
midbrain (including the ventral tegmental area; VTA) (Bonfiglio et al. 2011; Lemos et al.
2012; Refojo et al. 2011). Corticotropin-releasing factor type-2 is also widely expressed in
the central nervous system and found peripherally (Bittencourt & Sawchenko 2000; Korosi
et al. 2006, 2007; Lukkes et al. 2011; Palchaudhuri et al. 1999; Van Pett ef al. 2000).
Although there is significant overlap in brain distribution of CRF; and CRF, (Hauger et a/.
2006; Lukkes et al. 2011), important differences in distribution have also been found. For
example, CRF», but not CRF4, is present in the ventromedial and medial preoptic nuclei of
the hypothalamus; CRFy, but not CRFy, is expressed in the NAcc and the CeA,; and both
CRF; and CRF; are present in the medial nucleus of the amygdala (Bittencourt &
Sawchenko 2000; Hauger et al. 2006; Van Pett et al. 2000). A primary CRF,-mediated
regulation of serotonergic neurons in the dorsal raphe (DR), with implications for anxiety
and depression, has also been described (Hauger et al. 2006; Meloni et al. 2008).

Corticotropin-releasing factor also binds to CRF-binding protein (CRF-BP), which is found
centrally and peripherally (Alderman & Bernier 2007; Manuel et al. 2014, Potter et al.
1992). Several central locations are listed in Figure 1. The CeA is a particularly CRF-BP
dense region (Alderman & Bernier 2007; Potter ef al. 1992). Some of the proposed functions
of CRF-BP are to restrict transport/release of CRF in some centrally located pathways
(Potter et al. 1992), aid in protecting CRF from degradation once it has been released
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(Seasholtz et al. 2002) and modulate CRF-induced potentiation of glutamate receptor
function via CRF, actions (Ungless et al. 2003).

The complexity of the CRF system is further increased by the existence of additional
endogenous agonists. Corticotropin-releasing factor receptors can be activated by the
urocortin (Ucn) family of neuropeptides: Ucny, Ucn, and Ucns. Urocorting binds with
similar affinity to CRF{, CRF, and CRF-BP, whereas Ucn, and Ucns bind primarily to
CRF, (Bittencourt et al. 1999; Lewis et al. 2001; Reyes et al. 2001; Ryabinin et al. 2012;
Vaughan et al. 1995). Urocortin, is predominantly expressed in the centrally projecting
Edinger-Westphal (EWcp) nucleus (Bittencourt et al. 1999; Kozicz et al. 1998; Ryabinin et
al. 2005; Vaughan et al. 1995). Note that two divisions of the EW have been named EWcp
and EWpg (preganglionic), based on cell groups and projections (Kozicz et al. 2011). Cells
in the EWcp contain stress-and feeding-related neuropeptides, such as Ucny, whereas the
EWpg contains neurons that control oculomotor function and send cholinergic inputs to the
ciliary ganglion. Urocortin, and Ucng are more widely distributed than Ucn;. Among other
structures, Ucn, is present in the hypothalamus (PVN and arcuate nucleus) and the locus
coeruleus, and Ucng is expressed in several brain structures, including the BNST and the
medial nucleus of the amygdala (Cavalcante et a/. 2006; Deussing et al. 2010; Lewis et al.
2001; Li et al. 2002; Reyes et al. 2001; Tanaka et al. 2003).

The CRF system has a key role in mood disorders (Aubry 2013; Kormos & Gaszner 2013).
Activation of CRFq and CRF; has been associated with negative emotionality, anxiety-like
behavior and the behavioral responses to stress, with CRF; thought to be responsible for the
initiation of such responses and CRF, mediating termination and recovery (Coste et al.
2006; Hauger et al. 2006; Janssen & Kozicz 2013). The roles of CRF; and CRF, in behavior
have also been interpreted with regard to their involvement in responses to (real or
perceived) escapable vs. inescapable stressors. For example, CRF; mediates active defensive
responses to escapable stressors, and CRF, mediates responses to inescapable,
uncontrollable stressors that could be associated with anxiety and depression vulnerability
(Hauger et al. 2006). The involvement of CRF and Ucn peptides in stress-induced feeding
behavior has received considerable attention (Stengel & Tache 2014), and mounting
evidence is supporting involvement of CRF and Ucns in different aspects of social behavior
(for a review, see Hostetler & Ryabinin 2013).

Overall, CRF systems play an important role in regulating a number of functions with key
implications for adaptive behavior, motivation and emotion. Over the last three decades,
special emphasis has been placed on the understanding of the behavioral relevance of stress-
and drug-induced long-term changes in CRF system neurophysiology. This brief description
does not do justice to a rich literature pertaining to a wide range of behaviors that involve
CRF; and CRF;, signaling, and the reader is referred to the reviews cited above. In the next
section, we focus on the role of CRF and its receptor in the context of addiction, and
specifically its importance in EtOH intake, changes in intake and behavioral traits that
reflect neuroplasticity induced by chronic EtOH exposure. Figure 2 illustrates some of the
central CRF-related neurocircuitry that may be involved in EtOH-related phenotypes
discussed in this review. For example, the CeA and BNST play important roles in negative
emotional states that drive chronic EtOH use in some individuals; the basolateral amygdala
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(BLA) further affects this circuit. The periaqueductal gray, in its role as an important
functional interface between the forebrain and lower brainstem, has a probable effect as an
integrator of behavioral responses to stressors, both internal and external. The prefrontal
cortex has well-known executive functions that affect not only craving and habit formation
via interactions with other brain nuclei, such as the dorsal striatum (not shown here), but also
basic reinforcement and conditioned reinforcement via the NAcc shell and core,
respectively, which sustain use and impact relapse. Also, receptor types found in the
included brain regions and transmitters in neural pathways that direct communication are
included in Fig. 2. For example, the PVN is a critical regulator of stress responses and is
modulated by a serotonergic projection from the DR. For additional important information,
the reader is referred to papers and figures that consider disorders that are co-morbid with
addiction (Gilpin 2014; Reul & Holsboer 2002) and articles that discuss important
functional differences of sub-regions of structures, such as the prefrontal cortex (George &
Koob 2010; Lu & Richardson 2014; Marchant et al. 2014) and CeA (Duvarci & Pare 2014;
Gilpin 2014).

Addiction and the CRF system: a common pathway for drugs of abuse

One psychopathology commonly associated with CRF dys-regulation and stress is drug
addiction. All drugs of abuse, regardless of specific mechanism of action, induce activation
of CRF signaling and the HPA axis (for reviews, see Armario 2010; McReynolds et al.
2014), and their effects are modulated by stress (Aguilar et al. 2013; Picetti et al. 2013;
Roberts et al. 1995; Stephens & Wand 2012). Additionally, these addictive substances
produce important CRF-mediated and stress-influenced long-lasting neuroadaptations that
have been suggested to explain key aspects of the development and maintenance of the
addictive phenotype (Koob 2013; Koob & Le Moal 2001; Leyton & Vezina 2014; Robinson
& Berridge 1993, 2008; Wise & Koob 2014; Zorrilla et al. 2014).

All abused drugs sensitize mesolimbic DA mechanisms and induce behavioral sensitization
to their stimulant effects; in fact, behavioral, or psychomotor, sensitization has been used
extensively as a measurable phenotype of such underlying neuroplasticity (Robinson &
Berridge 1993, 2008; Sanchis-Segura & Spanagel 2006). Mesocorticolimbic DA signaling
has been associated with different components of positive reinforcement and reward
processes, including activation, motivation, incentive salience, ‘wanting’ (but not necessarily
‘liking’), effort, goal-directed behavior and reward-related learning (Berridge & Kringelbach
2013; Salamone & Correa 2012; Schultz 2013; but also see Wise 2008). Long-lasting
upregulation of DA mechanisms has been linked to unmanageable pathological motivation
and compulsive drug seeking and taking characteristic of addiction. Evidence indicates that
stress produces a CRF-mediated activation of DA systems that is comparable to that induced
by addictive substances (Sinha 2008). This is, moreover, an effect that appears to be
especially critical during adolescence, a time when maturing DA systems show increased
sensitivity to stress hormones (Burke & Miczek 2014; Sinclair ef al. 2014). Cross-
sensitization between stressors and addictive drugs, including EtOH (Roberts et al. 1995),
has also been described. Additionally, research on humans has shown that stress elevates
striatal extracellular DA levels (Adler et al. 2000; Soliman et a/. 2008). Stress and CRF
activation can therefore be understood as key facilitators of drug-induced neuroplasticity in
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mesocorticolimbic DA systems associated with dysregulation of positive reinforcement
mechanisms in addiction.

Abused drugs and stress also produce enduring changes within CRF systems. Long-lasting
dysregulation of extra-hypothalamic CRF mechanisms (primarily extended amygdala, and
also prefrontal cortex neurocircuitry) have been linked to the negative emotionality, anxiety
and vulnerability to stress seen in addicts (Gerra et al. 2014; Thorberg & Lyvers 2006;
Valdez & Koob 2004). As discussed in greater detail below for EtOH, drug-induced
activation of brain stress response systems sensitizes over time, especially with repeated
withdrawal, and this sensitization has been seen to persevere into protracted abstinence,
critically contributing to the persistence of relapse. Extra-hypothalamic CRF dysregulation
is a key biological mechanism underlying manifestation of negative emotional states
associated with drug abstinence, even well beyond the time when physical symptoms of
withdrawal are seen (Koob 2014; Koob & Le Moal 2008). However, important HPA axis-
dependent effects, such as upregulation of glucocorticoid receptors (GRS) in the CeA,
associated with protracted EtOH abstinence, indicate that both hypothalamic and extra-
hypothalamic mechanisms interact and participate in critical aspects of long-lasting drug-
induced neuroadaptation (Vendruscolo et a/. 2012). Overall, strong scientific support
suggests that dysregulation of positive and negative reinforcement mechanisms, which
underlie pathological motivation associated with drug craving and increased negative
emotionality and vulnerability to stress, critically involve the CRF system.

Corticotropin-releasing factor and stress-axis involvement have received particular attention
in the context of the investigation of the neurobiological effects of EtOH. Ata
neurophysiological level, laboratory animal and human research show that systemic
administration of EtOH increases CRF and induces HPA axis activation (Jenkins &
Connolly 1968; Pastor et al. 2008, 2011; Rivier 1996). Although the precise mechanism by
which EtOH stimulates stress systems and hormones is yet to be fully described, growing
evidence indicates that this is a central, CRF/CRF;-mediated effect (recently reviewed by
Armario 2010). Convincing support for this conclusion arises from a number of studies
showing HPA axis activation with systemic or intracere-broventricular (ICV) administration
of EtOH (Lee et al. 2004; Ogilvie et al. 1998), as well as a blunted HPA response to EtOH in
CRF4 null mutant mice (Lee et al. 2001b; Pastor et al. 2008) or after administration of a
CRF antiserum (Rivier ef al. 1984).

Hypothalamic regulation of glucocorticoids is altered by a history of EtOH exposure; human
and rodent data show that repeated EtOH produces an increase in baseline levels of CORT,
with a flattening of natural glucocorticoid circadian level variations and a diminished
response to stress challenges (Errico et al. 1993; Lee & Rivier 1997; Lee et al. 2001a;
Rasmussen et al. 2000; Wand & Dobs 1991). However, the effects of chronic EtOH and
EtOH withdrawal on CRF systems are complex and depend on EtOH administration
procedures, time of measurement and whether other stressful stimuli are included in the
study design (for a review, see Allen et al. 2011). For example, one study examined the
effect of 14 days of continuous EtOH vapor exposure in Sprague—Dawley rats and found a
decrease in the number of CRF-binding sites in the pituitary when tissue was taken
immediately after withdrawal from EtOH (Dave et al. 1986). However, in another study,
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again in Sprague-Dawley rats, 7 days of continuous vapor exposure were associated with
decreased hypothalamic CRF content in tissue obtained immediately after withdrawal
(Rivier et al. 1984). A change in the same direction in these two studies suggests that the
decrease in receptors was not a compensatory change; however, the methods were not
identical in the two studies, complicating interpretation. A number of studies examining
CRF-related effects have used intermittent, rather than continuous, vapor exposure
procedures. For example, using a 6 h/day, 8-day EtOH vapor exposure period, CRF stores in
the external zone of the median eminence of Sprague-Dawley rats were decreased; tissue
was taken ~12 h after withdrawal (Lee et a/. 2000). Criado et al. (2011) exposed Wistar rats
to EtOH vapor for 14 h/day for either 2 or 8 weeks and then examined CRF
immunoreactivity in the amygdala, frontal cortex, hippocampus and parietal cortex
immediately, 24 h or 2 weeks after withdrawal from EtOH vapors. No significant effects
were found in the rats exposed for 2 weeks. However, increased CRF immunoreactivity was
found in the hippocampus and parietal cortex of rats exposed for 8 weeks, when examined
24 h or 2 weeks, but not immediately, after withdrawal. These and other data not reviewed
here (Koob & Zorrilla 2010; Lack et al. 2005; Richardson et al. 2008a; Sommer et al. 2008;
Uhart & Wand 2009) show that effects of chronic EtOH exposure on CRF systems cannot be
defined without careful consideration of methodological details. Furthermore, factors such
as sex, species and age of stress or EtOH exposure should be considered (Logrip et al. 2013,;
Przybycien-Szymanska et al. 2010, 2011; Silva et al. 2009; Van Waes et al. 2011).

At a behavioral level, EtOH consumption, abuse and relapse have been observed to be
critically modulated by CRF and stress, and there is a high incidence of co-morbidity
between alcoholism and stress-associated disorders such as anxiety and depression (Boden
& Fergusson 2011; Haass-Koffler et al. 2014; Lijffijt et a/. 2014). Furthermore, abnormally
high levels of CORT, a condition known as pseudo-Cushing's syndrome (Kirkman & Nelson
1988), are frequently found in alcoholics. Laboratory animal research has provided support
for participation of the CRF system in stress-induced changes in EtOH effects and in EtOH-
induced neuroadaptations that are reflected in behavioral changes (Fig. 3). In the following
sections, we review literature focusing on the involvement of stress, and components of the
CRF system, in EtOH consumption and the behavioral aspects of EtOH-induced
neuroadaptation. Tables 1 and 2 list many of the studies in these areas, with Table 1
providing references, trait information and results for knockout (KO) and transgenic mouse
studies, and Table 2 providing detailed information for pharmacological studies. We do not
exhaustively review the literature on the effects of EtOH on CRF-related peptide levels; that
is beyond the scope of this review. We refer to specific literature, but the reader is referred to
the tables for details such as animal species, genotype and methods associated with EtOH
and other drug treatments.

The role of CRF systems in EtOH intake

A large number of studies have supported a role for CRF and CRF-related systems in EtOH
intake, which has led to considerable interest in the potential of CRF-related
pharmaceuticals as treatments for alcohol use disorders (Egli 2005; Heilig & Koob 2007;
Zorrilla et al. 2013). EtOH intake has been examined using multiple procedures, including
two-bottle choice continuous access, operant self-administration to get at strength of
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reinforcement and reinstatement of EtOH seeking (discussed in greater detail in the section
on the role of CRF systems in EtOH-induced neuroadaptation), and limited access “drinking
in the dark’ (DID) procedures to obtain binge-like levels of intake. Papers and findings are
listed in Tables 1 and 2, and several reviews have covered much of the literature (see reviews
cited above). We highlight some of the findings here.

Single gene mutant mice

Only four papers had been published using single gene manipulations in mice to examine
the influence of CRF-related genes on EtOH intake by the time of a 2006 general review of
EtOH-related genes (Crabbe et al. 2006). Since then, many additional papers have appeared
(Table 1). In the initial study examining EtOH intake in CRF KO mice, KO mice consumed
more EtOH than did wild-type (WT) mice in both a 24-h continuous access procedure and a
limited access procedure (Olive et al. 2003). The opposite phenotype was found in CRF
overexpression mice that were examined for their continuous access EtOH drinking
phenotype (Palmer et al. 2004). However, more recently, Kaur et a/. (2012) reported reduced
EtOH intake in CRF KO mice in a binge-like DID study. The opposite findings in CRF KO
mice could be related to the role of CRF in procedures in which EtOH intake is generally
lower (Olive et al. 2003) vs. higher (Kaur et al. 2012).

Several studies have examined the role of CRF; using KO mice, and results have not been
entirely in agreement. The first study examining EtOH intake in constitutive CRF; KO mice
found no initial effect, but reported a long-term increase in continuous access EtOH
consumption in CRF; KO mice after repeated stress exposure that was not seen in their WT
controls (Sillaber et al. 2002). In that report, initial EtOH intake levels were low (~1 g/kg/24
h) and stress-induced levels remained relatively low (<4 g/kg/24 h). A more recent paper,
using the same KO mice, obtained data that are in agreement with those findings (Molander
et al. 2012). However, other studies have found reduced EtOH intake in constitutive CRF;
KO mice, specifically when EtOH was offered at higher concentrations (20%) or using a
DID procedure, and thus, when EtOH intake was generally higher in the WT littermate mice
(Giardino & Ryabinin 2013; Kaur et al. 2012; Pastor et al. 2011). In addition, also
inconsistent with Sillaber et al. (2002), are studies in which forced swim or social defeat
stress-induced increases in EtOH intake have been found to be absent or reduced in CRF
KO mice (Molander et al. 2012; Pastor et al. 2011); furthermore, EtOH withdrawal-induced
increases in EtOH self-administration and intake were not seen in CRF; KO mice (Chu et al.
2007; Molander et al. 2012). One difference in the studies that have found reduced intake
and a lack of stress response is that the KO mice were backcrossed onto the EtOH-preferring
C57BL/6J mouse strain for several generations. In fact, Molander et a/. (2012) also found
that stress-induced increases in EtOH consumption were lower in a brain-specific CRF; KO
that was on a mixed 129S2/Sv x C57BL/6J x SJL strain background. In general, the
majority of the data suggest that adequate CRF4 function is important for higher levels of
EtOH intake and for stress-induced changes in EtOH intake.

Because receptor-specific antagonists for CRF, that can be administered peripherally are not
available, information about the involvement of CRF; signaling in EtOH-related phenotypes
has relied mostly on studies in CRF, KO mice. In general, data have suggested a modulatory
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role on the more significant involvement of CRF in stress-related responses (Coste et al.
2000, 2006). The initial study in CRF, KO mice examined both continuous and limited
access EtOH drinking. No effect of the mutation was found in the continuous access study.
The limited access study included 30-min access periods as the EtOH concentration was
increased, followed by 2-h access periods. A modest difference in intake (KO > WT) was
found for some concentrations during the 30-min access phase that was not sustained when
the access period was increased (Sharpe et al. 2005). In a more recent study, a small
transient reduction in EtOH intake was seen in CRF, KO mice that appeared to be largely in
males (Kaur ef al. 2012). Therefore, this receptor subtype has not had a sustained effect on
EtOH consumption in the studies that have been conducted thus far.

Pharmacological studies

Intracerebroventricular administration of CRF has been found to decrease EtOH
consumption in rats and mice (Bell ef a/. 1998; Ryabinin et a/. 2008; Thorsell et al. 2005),
which is consistent with reduced EtOH intake in CRF overexpression mice (Palmer et al.
2004). However, some data suggest non-specific effects on fluid intake (Ryabinin et al.
2008). Centrally administered CRF has also been found to reinstate EtOH seeking behavior
(Le et al. 2002), which is consistent with its role as a stressor. Results for the effect of the
other endogenous CRFy,, agonist peptide, Ucny, on EtOH intake have been dependent upon
brain region, as intra-DR application had no effect, but intra-lateral septum infusion reduced
both established EtOH intake and the acquisition of EtOH drinking (Ryabinin et a/ 2008).
Overall, the majority of the data appear to indicate that drugs that have combined agonist
actions at CRFq and CRF, receptors reduce EtOH intake (see CRF and Ucn; entries in Table
2).

On the other hand, there is a large body of data showing that reduced CRF; signaling via
receptor antagonist administration also reduces EtOH intake. As this literature has evolved,
it has become more apparent that CRFq antagonists have greater effects when EtOH intake
levels are high. For example, subcutaneous administration of the CRF, antagonist, N, -
bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo [1,5-
a]pyrimidin-7-amine, attenuated elevated levels of EtOH intake seen in alcohol preferring
(P) rats after dependence induction, while not affecting EtOH intake in non-dependent P rats
(Gilpin et al. 2008). Similarly, operant responding for EtOH was decreased by several
different CRF, (or CRFy») antagonists in EtOH-dependent, but not in non-dependent,
animals (Finn et al. 2007; Funk et al. 2006; Overstreet et al. 2007; Sabino et al. 2006), and
these drugs tend to reduce binge-like or stress-induced heightened EtOH intake, with less
consistent effects on more modest levels of intake (Cippitelli ef al. 2012; Lowery et al. 2008;
Lowery-Gionta et al. 2012; Simms et al. 2014). However, not all studies have consistently
supported this generalization. For example, a significant restraint stress-induced increase in
EtOH consumption in 129SVEV mice was not blocked by the CRF; antagonist, R121919
(YYang et al. 2008), and CP-154,526 reduced intake under both higher and lower intake
conditions in mice and rats (Hwa et a/. 2013). Also, lesioning the CeA, which would be
expected to affect neurons that are relevant to CRF-related pathways, did not prevent
heightened levels of EtOH intake seen in C57BL/6J mice after dependence induction
(Dhaher et al. 2008). Finally, Sharpe and Phillips (2009) showed that the selective CRF»
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agonist, Ucng, delivered centrally to non-dependent C57BL/6J mice, reduced 2-h limited
access 10% EtOH consumption. This study used lickometers to investigate drinking patterns,
and identified that reduced EtOH drinking by Ucns was associated with a change in size of
the largest drinking bouts. Lowery et al. (2010) also found that ICV infusions of Ucns
reduced binge-like EtOH drinking in C57BL/6J mice.

In conclusion, growing evidence from studies using both single gene mutant mice and
pharmacology indicates that voluntary EtOH intake can be mediated by CRF signaling via
CRF;. CRFq appears to play a key role in acquisition of EtOH drinking when high levels of
intake are achieved via binge-like drinking, genetic predisposition, exposure to high
concentrations of EtOH or a combination of these conditions. Current literature also
suggests that the enhancing effects of stress on EtOH drinking are mediated by CRFy,
although results may be influenced by species, genotype and methodological factors. A
significant literature supports the view that increased EtOH drinking seen after long-term,
dependency inducing periods of exposure to EtOH and EtOH-induced negative emotionality
and anxiety associated with post-dependent states are mediated, at least in part, by CRF;.
CRF, appear to play a more minor role.

Effects of EtOH drinking on CRF and related molecules

We have focused on the ability to manipulate EtOH drinking and EtOH-induced
neuroplasticity by genetically or pharmacologically altering relevant components of the CRF
system. However, a few comments about the changes in this system induced by EtOH
drinking are pertinent. A relatively early study examined the effect of different levels of
voluntary EtOH drinking on brain CRF levels. Wistar rats were classified as low, moderate
and high intake and then examined for CRF concentration in several brain regions. Rats
classified as high drinkers had higher non-median eminence hypothalamic CRF
concentrations, but lower neurointermediate pituitary and pons-medulla CRF concentrations
(George et al. 1990). 1t should be noted that the different drinking levels in these Wistar rats
could have had genetic, environmental or both types of influences as their source. In a more
recent study, the number of CRF-positive cells in the CeA was higher in adult mice
immediately after a binge-like EtOH drinking episode (Lowery-Gionta et a/. 2012). This
relationship appears to be altered when EtOH exposure occurs at an earlier, more distant
time point, as CRF cell counts in the CeA were reduced, rather than increased, in adult rats
that had a history of adolescent binge drinking (Gilpin et al. 2012), and so was CRF mRNA
in the BLA (Falco et al. 2009). However, adolescent rats may have a higher basal level of
CRF in some brain regions, including the CeA, compared with adult rats, which could affect
the response of this system (Wills er al. 2010).

Some studies have examined the effect of pre-existing genetically-determined differences in
EtOH preference. When the effect of voluntary EtOH drinking on CRF mRNA levels was
examined in selectively bred Sardinian alcohol preferring (sP) rats, CRF mRNA levels were
decreased in the CeA, but not in hypothalamus (Zhou et a/. 2013). Furthermore, data for
individual animals showed a significant negative correlation between intake and CRF mRNA
level in the amygdala. Of course, it is impossible to compare this outcome to that in the
oppositely selectively bred non-preferring line, because they will not voluntarily consume
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much EtOH. However, innate differences in pairs of selected lines can be examined. For
example, when lines of rats bred for high and low EtOH drinking were compared in the
EtOH-naive state, CRF-positive cells and CRF mRNA were significantly lower in the CeA
of alcohol preferring (P), compared with alcohol non-preferring (NP) rats, but not in the high
alcohol drinking (HAD), compared with low alcohol drinking (LAD) rats (Hwang et al.
2004). Thus, the data are inconsistent with regard to levels of these CRF-related peptides as
predictors of genetically determined tendency to consume EtOH. In addition, several lines of
rats have been compared for native differences in Ucn-positive cells in the EWcp, with
mixed findings; a greater number of Ucn, cells was found in the preferring line in two of the
five surveyed pairs; a lower number in one preferring compared with non-preferring; and no
difference was found in two of the five pairs (Turek et a/. 2005). On the other hand, data
from these rat lines were more consistent in showing a greater number of Ucnq-positive
projections to the lateral septum in association with EtOH preference (Turek ef a/. 2005).
Furthermore, using immunohistochemistry, three sublines of alcohol-preferring rats were
compared with control Wistar rats for Ucnq-positive cells in the EWcp. The number of
Ucnq-positive cells was greater in male P, compared with Wistar rats; a similar non-
significant trend was found in female animals (Fonareva et al. 2009). Therefore, there are
again contradictory findings, with regard to whether number of Ucnq-positive cells serves as
a marker for differences in genetically determined EtOH preference. Some of this variability
in results could be related to the heterogeneous nature of the underlying genetic factors for
EtOH drinking.

Other genetic findings

A few studies have provided evidence of associations of genetic polymorphisms in CRF-
related genes with EtOH drinking phenotypes. The rhesus macaque CRH gene has been
sequenced and examined for functional variants. One variant (—-2232C—G) was shown to
decrease DNA—protein interactions and decrease sensitivity of the CRH promoter to
glucocorticoids in an /n7 vitro assay. This variant was also associated with reduced CRF in
the cerebral spinal fluid, and increased plasma ACTH, under non-stress conditions. It was
also associated with increased EtOH consumption in adult macaques. The authors state that
the genetic effect was specifically in macaques that were mother-reared in social groups, as
opposed to macaques that were first isolate reared by human caregivers and then placed with
peers from 37 days forward; however, intake data were not presented for the latter group
(Barr et al. 2008). A single nucleotide polymorphism (SNP) within the rhesus macaque CRH
promoter (—248C—T) was found to increase DNA—protein interactions and to increase
EtOH consumption in animals that were isolate-peer reared, but not mother-reared. These
monkeys also exhibited a larger stress-axis response to social separation stress (Barr et al.
2009). The authors suggested that effects of mutations may be specific to environmental
conditions. Thus, for example, some may have effects under social drinking situations and
others may affect stress-related drinking.

The electroencephalographic response to CRF was examined in P and NP rats as a marker of
CRF-induced neural activation. P rats exhibited a larger response, compared with NP rats,
and a lower basal concentration of CRF was found in P rats in several brain regions. These
results led to the speculation that CRF receptors may be upregulated in P rats and that these
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differences in CRF neural regulation may contribute to differences in EtOH consumption
(Ehlers et al. 1992). Subsequently, the finding of lower CRF in P rats was confirmed, but it
was not replicated in another set of HAD and LAD lines (Hwang ef a/. 2004). Also, basal
CRF levels in the CeA of sP rats were higher than in Sardinian non-preferring (SNP) rats
(Richter et al. 2000; Zhou et al. 2013), a region where it had been found to be lower in P rats
(Ehlers et al. 1992; Hwang et al. 2004). Furthermore, no difference was found between the
high EtOH drinking C57BL/6J and EtOH avoiding DBA/2J mouse strains (Hayes et al.
2005). Therefore, a clear relationship between CRF level and genetically determined level of
EtOH intake is not apparent. However, differences in innate anxiety level found between the
P and NP (P > NP) rats, but not between HAD and LAD rats, may reflect variation in the
specific genes involved in the selection traits across EtOH consumption selected lines and
also support significant involvement of CRF specifically in anxiety-or stress-related
drinking. Based on human SNP association analysis, Enoch et a/. (2008) suggested that the
CRF-BP gene (CRHBP) plays a role in stress-related EtOH use. However, a negative, rather
than positive, correlation was found between level of anxiety-like behavior and CRF level in
sP and sNP rats. Chen et a/. (2010) suggested a role for CRHRI genetic variation in
vulnerability to alcohol use disorder, and Treutlein et a/. (2006) suggested an association of
CRHR1 polymorphisms with pattern of alcohol consumption. Additional genetic
investigations will be needed to substantiate these relationships and identify gene networks
that are likely to influence complex alcohol-related traits and possibly be population-
specific.

A SNP in the promoter region of the CRF; gene (CrhrI) of the Marchigian—Sardinian
preferring (mSP) rat may influence their heightened stress-induced EtOH drinking
phenotype. This polymorphism results in upregulation of CrAr1 in several brain regions,
compared with levels seen in control Wistar rats. When these rats were treated with a CRFq
antagonist, stress-induced reinstatement of EtOH drinking was blocked in mSP, but not in
Wistar, rats (Hansson et al. 2006). Furthermore, chronic free-choice EtOH drinking was
associated with downregulation of the CRFq protein in the amygdala and NAcc (Hansson et
al. 2007). The authors suggested that heightened levels of CRF; drive excessive EtOH
intake, which consequently reduces CRF; activity.

Because the gene coding for CRF, (Crhr2) maps to a genetic region associated with EtOH
consumption, specifically in the inbred P and NP rats, CrAr2 expression and sequence were
examined and a receptor function assay was performed. Lower levels of Crhir2 expression
were found in P rats in some brain regions. In addition, a 7 base pair insertion polymorphism
in the promoter region of the gene was found in the P rat, as well as a coding region
polymorphism and an amino acid deletion in the 3’ untranslated region. The effect of the
promoter insertion /n vitrowas to lower Crhr2 expression, and CRF, density in the
amygdala was lower in P, compared with NP rats (Yong et al. 2014). Whether these
differences directly relate to differences in EtOH consumption between P and NP rats will
require further investigation.
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The role of CRF systems in EtOH-induced neuroadaptation

Dependence, withdrawal and relapse

Single gene

One potential consequence of repeated EtOH administration is the development of
dependence. Dependence can be inferred from certain symptoms that may be seen when
chronic EtOH is withdrawn. Affective symptoms associated with EtOH withdrawal include
increased anxiety, dysphoria and depressed mood, symptoms that have been posited to
involve changes in the stress axis and central CRF-mediated process (Breese et al. 2005a;
Ciccocioppo et al. 2009; Clapp et al. 2008; Griffin 2014; Koob 2010; Koob et al. 2014;
Lowery & Thiele 2010; Shalev et al. 2010; Zorrilla et al. 2013). In addition, repeated bouts
of EtOH exposure and withdrawal have been associated with escalation of EtOH intake (see
description and history of this model in Vendruscolo & Roberts 2014) and a number of
studies have explored the involvement of CRF systems in this effect, and in reinstatement of
EtOH drinking and seeking, as traits relevant to relapse.

mutant mice studies

Few studies have utilized mutant mice to investigate the role of the CRF system in EtOH
withdrawal-related effects. When CRF; KO and WT mice were made dependent on EtOH
using a liquid diet, the KO mice did not exhibit withdrawal-induced increased EtOH
seeking, whereas WT mice did; KO and WT mice were similar in EtOH seeking in the non-
dependent state (Chu et a/. 2007). The same paper reported that the CRF; antagonist,
antalarmin, blocked withdrawal-induced increases in EtOH seeking in C57BL/6J
background strain mice made dependent using EtOH vapor inhalation. These data support
CRF; involvement in dependence-induced increases in EtOH seeking. We were not able to
find additional studies examining effects in CRF-related KO mice.

Pharmacological studies

A number of studies have investigated the role of CRF and its related peptides in
withdrawal-induced increases in EtOH drinking or self-administration using
pharmacological manipulations. Data collected in C57BL/6J mice, in which a CRFy»
antagonist was microinjected into the CeA, showed a decrease in EtOH withdrawal-
associated EtOH intake in the absence of an effect on non-dependent mice (Finn et a/. 2007).
A larger number of studies have examined the specific involvement of CRF; and there is
general agreement that CRF4 antagonists attenuate withdrawal-associated increases in EtOH
drinking/self-administration (Chu et a/. 2007; Funk et al. 2007; Gehlert et al. 2007;
Overstreet et al. 2007; Roberto et al. 2010; Sabino et al. 2006). In most cases, the CRF
antagonist effects did not generalize to non-dependent animals; however, in one study that
examined EtOH intake during operant sessions, rather than number of reinforcers,
attenuating effects of R121919 were seen in both dependent and non-dependent rats
(Roberto et al. 2010). It is worth mentioning, however, that in this study, repeated R121919
treatment was given 24 h before each operant testing session.

A few studies have examined the role of CRF,. One study examined EtOH withdrawal-
associated increased self-administration after intra-CeA infusion of Ucng and attenuation
was found (Funk & Koob 2007); however, EtOH self-administration in the non-dependent
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rats in this study was increased by intra-CeA Ucng infusion. Others have found decreased
EtOH intake with ICV infusion of Ucng in C57BL/6J mice using DID procedures in which
higher levels of EtOH intake are induced (Lowery et al. 2010; Sharpe & Phillips 2009).
Therefore, while studies on KO mice do not appear to support a role for CRF ,, these
pharmacological studies suggest that both CRF; and CRF, may influence higher levels of
EtOH intake.

In mice made dependent using EtOH liquid diet, the non-selective CRF receptor antagonist
a-helical CRF(g_41), given ICV, blocked the anxiogenic-like effects of EtOH withdrawal on
the elevated plus maze, but did not alter other withdrawal symptoms, including tail stiffness,
tremor or ventromedial distal flexion (Baldwin ef a/. 1991). The attenuating effect of CRF
receptor antagonism on the anxiogenic-like response has been replicated (Valdez et al.
2003). Further, when CRF was microinjected into several brain regions, but not others (see
Table 2), dose-dependent sensitization of an EtOH withdrawal-induced decrease in social
interaction was seen (Huang et a/. 2010), which has been posited to be an anxiety-like
behavior (File 1980). Examination of the brain regions that supported these effects suggests
that the extended amygdala is involved in withdrawal-associated anxiogenic behaviors.
Several additional studies have used the social interaction test, as a behavioral index of
anxiety-related behavior and have found that CRF; receptor-selective antagonists given
during EtOH withdrawal can blunt anxiety-like behavior (Breese et al. 2004, 2005b; Knapp
et al. 2004; Overstreet et al. 2007; Sommer et al. 2008; Wills et al. 2009). Furthermore, the
CRF4-selective antagonist, SSR125543, blocked CRF- and stressor-sensitized withdrawal-
induced anxiety-like behavior (Breese et al. 2005b; Huang ef a/. 2010; Knapp et al. 2011a).
However, the endogenous CRF,-selective agonist, Ucns, given ICV or into several brain
regions, did not affect EtOH withdrawal-associated anxiogenic effects (Huang et a/. 2010),
nor did the CRF, antagonist antisauvagine-30 (Overstreet ef al. 2004). Taken together, these
results suggest that CRFq plays a role in withdrawal-induced anxiogenic behaviors.

The role of CRF signaling has also been extensively studied in the context of behaviors
thought to model relapse; in particular, reinstatement of EtOH seeking/drinking behavior in
rodents. Corticotropin-releasing factor signaling involvement in escalation of use after
periods of deprivation has also been examined. Most commonly, reinstatement studies have
used operant methods in which animals are trained to perform an operant response to gain
access to a reservoir or sipper containing EtOH, and then, once stable responding is
achieved, extinction procedures are used that lead to low levels of the behavior that
previously resulted in EtOH access. Post-extinction, active drug taking or seeking behavior
(responding in the absence of drug delivery) can be re-established by drug priming,
presentation of cues that were previously associated with drug availability or application of a
stressor. In the case of EtOH, CRF signaling appears to play an important role in those
mechanisms that particularly mediate stress-induced reinstatement, but not in those that
facilitate drug prime or cue/context-induced reinstatement. For example, CRF; antagonists
selectively reduce footshock-induced reinstatement of responding for EtOH (Le et a/. 2000;
Liu & Weiss 2002), an effect that appears to be especially prominent in EtOH-dependent or
genetically selected EtOH preferring rats and is mediated by extra-hypothalamic
mechanisms (Gehlert et al. 2007; Le et al. 2000; Liu & Weiss 2002). In addition, CRF
signaling via CRF1 modulates pharmacologically-induced stress effects on EtOH
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reinstatement; thus, stress-axis activation induced by yohimbine, an a2 adrenoreceptor
antagonist that activates the ascending noradrenaline system and increases anxiety-like
responses, reinstates responding for EtOH. This reinstatement is prevented by CRF and
CRF7 antagonism (Le et al. 2000, 2002; Marinelli et a/. 2007), which appears to be mediated
by CRF receptors in the median raphe nucleus (Le et a/. 2013). On the other hand, the NAcc
appears to be an important brain structure involved in the role of CRF in stress-induced
escalation of EtOH intake during periods of deprivation. For example, when EtOH-
preferring P rats that have a history of EtOH drinking are re-introduced to EtOH, intake can
be increased as a consequence of exposure to restraint stress administered during a period of
EtOH deprivation; this effect was prevented by intra-NAcc injection of a CRF; antagonist
(Knapp et al. 2011a). Furthermore, increased EtOH intake can be induced by intra-NAcc
administration of CRF during the deprivation period (Knapp ef a/. 2011a). For a review of
additional research examining stress-induced reinstatement of drug seeking and the role of
CRF (among other neuropeptides), see Shalev et a/. (2010).

Psychomotor sensitization

The body of data examining the role of CRF-related systems in behavioral sensitization to
EtOH is small. However, data from both single gene KO mice and pharmacology have
consistently indicated that CRF and CRF1, but not CRF» and Ucny, play important roles in
the neuroadaptations that underlie the development and expression of psychomotor
sensitization to EtOH (Fee et a/. 2007; Pastor et al. 2008, 2012; Phillips et al. 1997).
Repeated restraint stress was previously shown to produce psychomotor sensitization to
EtOH through a mechanism that involves CORT and GR (Roberts et a/. 1995). More recent
results from our laboratory and other research groups have shown a key role of CRF and
CRF; in EtOH-induced psychomotor sensitization, even in the absence of an externally
applied stressor (Fee et al. 2007; Pastor et al. 2008, 2012). Absent EtOH sensitization in
CRF; mice was also associated with a blunted endocrine response (Pastor et al. 2008),
suggesting an involvement of the HPA axis. Repeated injections of CORT sensitizes the
locomotor-stimulant response to EtOH; however, the doses of systemic CORT necessary to
induce sensitization resulted in plasma CORT levels notably higher than those produced by a
sensitizing EtOH treatment (Pastor et al. 2012). Participation of hypothalamic CRF and
CORT, therefore, appears to be necessary, but not sufficient, to explain the role of CRF/
CRF4 in the acquisition of sensitization to EtOH. In addition, the CORT synthesis inhibitor
metyrapone prevents the development, but not the expression, of EtOH sensitization
(Roberts et al. 1995). Furthermore, our data are in agreement with previous findings
showing that, although EtOH- or stress-induced changes in CORT can be necessary to
mediate acquisition of EtOH sensitization, no direct temporal correlation between plasma
CORT levels and behavior has been seen (Pastor et al. 2012; Roberts ef al. 1995). In
summary, a CRF-dependent mechanism, via CRFy, involving the HPA axis has been
proposed for acquisition of sensitization, whereas an extra-hypothalamic CRF/CRF;
mechanism has been suggested for expression of EtOH sensitization (Pastor ef a/. 2008,
2012).
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Concluding remarks and future perspectives: from preclinical to clinical

The preclinical investigation of CRF receptors and ligands in stress vulnerability, EtOH
dependence and relapse is among the most active research areas focused on the
pharmacology and genetics of EtOH-induced behavior. This review has summarized
evidence for CRF-related biological determinants that mediate stress- and EtOH-induced
behavioral changes. Robust scientific evidence suggests that CRF and CRF; play seminal
roles in stress-induced changes in EtOH consumption, binge-like EtOH intake, post-
dependent heightened drinking, genetic predisposition, negative emotionality and anxiety
and stress- and EtOH-induced behavioral sensitization. The field would benefit from
additional research aimed at identifying the specific molecular determinants of EtOH-
induced CRF; activation and CRF;-mediated neuroplasticity that contributes to changes in
EtOH responses. In an elegant study combining pharmacological and KO approaches, Bajo
et al. (2008) showed that EtOH induces the release of GABA in the CeA via a mechanism
that depends on a CRF4-initiated mechanism, which requires participation of protein kinase
C (PKC) epsilon. Mutant mice lacking PKC epsilon showed a stress- and EtOH-induced
phenotypic profile comparable to that found in CRF; KO mice (Table 1), characterized by
reduced anxiety-like behavior and EtOH consumption (Hodge ef al. 1999, 2002; Olive et al.
2000). Additional research exploring whether this mechanism is also involved in CRF;-
induced effects in other brain regions would further define the relevant brain circuitry. As
recently reviewed by Haass-Koffler and Bartlett (2012), CRF plays an important role in
facilitating acquisition and maintenance of plasticity in the VTA and amygdala, particularly
via enhanced glutamatergic activation and decreased GABA-mediated inhibition. Further
research exploring the mechanisms supporting CRF;-mediated plasticity would also be
extremely relevant in this field.

Given its clinical relevance and the notion that CRF-mediated neuroplasticity in the
mesocorticolimbic neuronal network may contribute to stress vulnerability, loss of control
over EtOH consumption and relapse, an increased and particular focus should be placed on
exploring strategies to block experiencing the effects of such neuroadaptations. This is
sometimes referred to as the expression of the neuroadaptive effect. Blocking or reducing the
expression of such neuroplastic changes could include not only pharmacological strategies,
but also behavioral strategies. Solinas et al. (2008) reported that environmental enrichment
can reduce some of the neurochemical and behavioral effects of repeated administrations of
cocaine, and others have indicated that this type of manipulation can reduce stress levels per
seand also reduce elevated stress hormones associated with morphine or amphetamine
administration (Ravenelle ef al. 2013; Xu et al. 2014). Investigating whether environmental
enrichment, such as increased physical exercise (Segat ef a/. 2014), might alter behavioral
and neurochemical indicators of CRF-mediated neuroplasticity associated with a history of
EtOH administration may be a valuable future line of research. Clearly, preventing all
exposure to EtOH is almost impossible, so focusing on the acquisition of neuroadaptations
may be less fruitful from the perspective of treatment; however, it should be mentioned that
recent findings for cocaine suggest that loss of environmental enrichment could increase
vulnerability to drug use (Nader et a/. 2012), and thus increase the probability of drug-
induced neuroplasticity.
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In view of some recent findings (reviewed by Zorrilla et al. 2014), additional preclinical
research is needed on genetic factors that contribute to differential effectiveness of CRF;
antagonists (Heilig et al. 2010; Sinha 2008). Further, additional explorations are needed to
substantiate data suggesting that gene polymorphisms may play a role in risk for EtOH use.
For example, Crfrand CrhrI polymorphisms have been associated with increased active
responses to stress in animals selectively bred for high preference for EtOH (Ayanwuyi et af.
2013; Cippitelli et al. 2014) and with increased EtOH consumption in monkeys exposed to
early life stress (Barr et al. 2009). Polymorphisms in human CRH;and CRHBP have also
been associated with different aspects of alcohol use and dependence (Chen et al. 2010;
Enoch et al. 2008; Treutlein et al. 2006).

Finally, based on promising results for CRF; antagonist effects on EtOH consumption in
animal models, there has been considerable interest in the potential for these drugs as
pharmacotherapeutics for alcohol use disorders. Zorrilla et al. (2013) suggest that such drugs
have promise, in part, because their anxiolytic-like actions do not appear to be susceptible to
tolerance (Zorrilla & Koob 2004), they do not appear to have sedative effects or adverse
effects on motor coordination nor adversely affect attention or learning (Hogan et al. 2005;
Zorrilla & Koob 2004; Zorrilla et al. 2002), and they may have little addiction liability
(Broadbear et al. 2002; Sahuque et al. 2006; Stinus et al. 2005). Clinical trials began about
10 years ago (December 2004) with several CRFq antagonists. Traits being examined have
included major depression, irritable bowel syndrome, social anxiety disorder and post-
traumatic stress disorder. None appear to have completed a Phase 111 trial. Development of
one antagonist was discontinued due to instances of elevated liver enzymes, others because
of lack of efficacy in double-blind, placebo-controlled trials for major depression (Koob &
Zorrilla 2012; Zorrilla & Koob 2010). Koob and Zorrilla (2012) have provided the
revisionist view that CRF, antagonists may be most efficacious for psychiatric disorders in
which stress is a more dynamic than chronic factor, including addiction. Perhaps, an
alternative to consider is a drug(s) that has indirect effects on the CRF system. For example,
in one study, the reduction in EtOH intake by the opioid receptor antagonist, naltrexone, was
associated with blockade of CRF expression in the PVN induced by EtOH drinking (Oliva &
Manzanares 2007). In another study, the effect of combined naltrexone and the CRF;
antagonist, CP154526, was examined on intermittent access EtOH drinking in C57BL/6J
mice, when infused into the DR. Each drug was effective, at least transiently, when given
alone, but an increased effect was not seen when the drugs were given together (Hwa et al.
2014). However, this study used an intermittent access EtOH protocol that did not
specifically include evaluation of the contribution of cue/context effects, which could be
important. Previous data indicate that opioid antagonists not only reduce EtOH intake
(Méndez & Morales-Mulia 2008), but also reduce cue-dependent reinstatement of EtOH
seeking (Liu & Weiss 2002). Context-dependent EtOH reinstatement has also been seen to
be mediated by opioid receptors, in particular, BLA opioid receptors (Burattini ef a/. 2006;
Marinelli ef al. 2010). These pre-clinical data are particularly relevant, as human data
indicate that opioid antagonism increases duration of abstinence periods (Maisel et al. 2013,;
O'Malley et al. 2007), which might be an indicator of opioid-mediated attenuation of the
relapse-triggering strength of context and other conditioned stimuli. A combined strategy
that reduces vulnerability to both stress-induced and conditioned stimuli-induced relapse
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could be important to consider. Collectively, we agree with many other investigators that the
CRF system plays a remarkably important role in the etiology and maintenance of addiction,
and particularly in the effects of excessive use. The need for continued research directed at
identifying ways to reverse or inhibit the effect of changes in this system on active and
relapsing use is supported by the existing findings.
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CRF
Binding
Protein

Found in hippocampus,
bed nucleus of the stria
terminalis, amygdala,
lateral septum, ventral
tegmental area and
pituitary; it is often co-
localized with CRF,
and/or CRF, receptors. In
humans, also found in
liver and circulation. CRF
binding protein is also
detected in non CRF-
related brain regions

* Species specific binding

Figure 1. Binding relationships of CRF-family peptides and their targets
CRF binds with high affinity to CRF; and CRF-BP and with lower affinity to CRF,. Ucnq

binds with high affinity to CRF;, CRF, and CRF-BP. Ucn, and Ucnjs are selective for CRF,
in all species; Ucn, has an affinity for CRF-BP in certain species. Those with the highest
affinity for the binding target are placed closest to that target while those with the lowest
affinity are placed farthest away. The locations shown for CRF;, CRF, and CRF-BP are not
inclusive, but are those most relevant to this review. For additional information, see De
Souza (1995); Hauger et al. (2006); Huising et al. (2008); Kiihne et al. (2012).
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Figure 2. Diagram of central CRF-related neurocircuitry and interactions with other
neurotransmitter systems

In this figure, we concentrate on the CRF neurocircuitry that we discuss in this article in
relationship to EtOH drinking and neuroadaptation-related phenotypes; however, not all
potentially relevant regions and pathways are represented. Colored circles within each brain
region denote the CRF-related receptor or CRF-BP that is found in that region, with colors
defined in the figure. Lines and arrows indicate the projections from one specific brain
region to another, with the color denoting the primary transmitter or peptide. CRF
projection, solid dark blue line and arrow; speculated CRF projections, dashed dark blue line
and arrow; DA projection, solid dark green line and arrow; GABA projection, solid red line
and arrow; glutamate projection, solid green line and arrow; norepinephrine projection, solid
brown line and arrow; serotonin projection, solid yellow line and arrow; Ucn; projection,
solid light blue line and arrow. Brain regions: BLA, basolateral nucleus of the amygdala;
HIPP, hippocampus; LH, lateral hypothalamus; LS, lateral septum; NTS, nucleus of the
solitary tract; PFC, prefrontal cortex;. * denotes that there are multiple divisions within this
region that contain varying levels of each of the noted binding targets. These subdivisions
may inferentially alter the roles CRF plays in EtOH-related behaviors. For additional
information, see Ahima et al. (1991); Bittencourt et a/. (1999); Brown (1986); Cowen et al.
(2004); Duvarci and Pare (2014); George and Koob (2010); Gilpin (2012); Gray and
Magnuson (1992); Haass-Koffler and Bartlett (2012); Handa and Weiser (2014); Hauger et
al. (2006); Justice et al. (2008); Korosi et al. (2006); Kihne et al. (2012); Lu and Richardson
(2014); Myers et al. (2014); Pitts et al. (2009); Potter et al. (1992); Radley (2012); Reul and
Holshoer (2002); Reyes et al. (2008); Ryabinin and Weitemier (2006); Silberman and
Winder (2013); Silberman et al. (2013); Sinha (2008); Van Pett et al. (2000); Wise and
Morales (2010).
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Figure 3. The HPA axisand central CRF processesin EtOH-induced neuroadaptations
EtOH activates the HPA axis and induces a well-known cascade of events: CRF is released

from the hypothalamus and binds to CRF in the anterior pituitary, resulting in ACTH
release; ACTH receptor (ACTH-R) activation results in CORT release from the adrenal
cortex. Hypothalamic GR activation reduces CRF release via a negative feedback loop.
CORT also regulates an extra-hypothalamic positive regulatory mechanism that increases
CRF activity. GR activation plays a role in EtOH-induced neuroadaptation, with a role for
long-lasting changes in hypothalamic and extra-hypothalamic structures.
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Table 1
Studies of EtOH drinking and neuroadaptation in KO and transgenic mice
Gene Reference Sex/background Trait Results
CRF Olive et al. 129S2/SvPas x C57BL/6J EtOH drinking; two-bottle CRF KO mice consumed
(2003) choice, 23 h/day for 16 days more EtOH than WT control
(2-10% EtOH); or 2 h choice  mice in both 23 and 2 h
(10% EtOH) under 22 h/day  access conditions. The
fluid restriction for 3 days; conditioned rewarding effect
EtOH-induced conditioned of 2 g/kg EtOH was absent in
place preference for four KO mice, but present in WT.
EtOH conditioning trials (2 The genotypes showed
or 3 g/kg EtOH) equivalent conditioned
rewarding effects of 3 g/kg
EtOH
CRF Kaur et al. 129S2/SvPas x C57BL/6J; EtOH drinking; single-bottle  CRF KO mice had reduced
(2012) male and female DID 2 h/day for 3 days, then ~ EtOH intake and BEC,

4 h/day on day 4 (20% compared with WT controls
EtOH)

CRF Pastor etal.  129Sv/J x C57BL/6J EtOH-induced locomotor CRF KO mice did not develop

CRF overexpression transgenic

CRF;

CRF;

CRF;

CRF;

CRF;

(2012)

Palmer et
al. (2004)

Sillaber et
al. (2002)

Nie et al.

(2004)

Chu et al.
(2007)

Pastor et al.
(2008)

Pastor et al.
(2011)

C57BL/6J x SJL

129/SvJ x 129/0la x CD1;
male

C57BL/6J x 129Sv

129/0la x CD1

129SV/J x C57BL/6J

129SV/J x C57BL/6J

sensitization; IP 2.5 g/kg
EtOH once daily for 10 days,
then IP 1.5 g/kg EtOH
challenge and locomotor test;
BEC and CORT levels

EtOH drinking; two-bottle
choice continuous access for
16 days (3-20% EtOH)

EtOH drinking; two-bottle
choice continuous access (2—
8% EtOH for 18 days; then
8% EtOH for upto 9
months); exposure to swim
and social defeat stress at 2
and 3 months

GABA neurotransmission;
brain slice electrophysiology

EtOH self-administration
training then EtOH liquid
diet for 14 days (2-4%
EtOH); EtOH WD effects on
operant EtOH self-
administration for 10
subsequent days

EtOH-induced locomotor
sensitization; IP 2.5 g/kg
EtOH once daily for 10 days,
then IP 1.5 g/kg EtOH
challenge and locomotor test;
BEC and CORT levels

EtOH drinking; two-bottle
choice continuous access for
16 days (3-20% EtOH); ina
separate study, two-bottle
intermittent access for 47
days (3-10% EtOH, and 21

Genes Brain Behav. Author manuscript; available in PMC 2016 April 29.

EtOH-induced locomotor
sensitization, whereas WT
mice did; CRF KO mice had
drastically reduced CORT
plasma levels, compared with
WT controls. BEC levels did
not differ

Transgenic mice consumed
significantly less EtOH than
their non-transgenic
littermates. Older transgenic
mice drank less EtOH than
younger transgenic mice

There was no initial
difference in EtOH
consumption between KO and
WT mice; KO mice exposed
to stress at 2 and 3 months
consumed more EtOH than
WT mice at 4-9 months.
There was no stress effect on
WT mice

CRF (100 nM) or EtOH (44
mM) did not enhance GABA-
mediated neurotransmission
in the CeA in CRF; KO mice,
but did in WT mice

CRF; KO mice did not
display EtOH WD-induced
increases in EtOH self-
administration, but WT mice
did

CRF; KO mice did not show
the EtOH-induced locomotor
sensitization seen in WT
mice, and had a blunted
CORT response to EtOH.
BEC levels did not differ

EtOH intake (20% EtOH
concentration only) was lower
in CRF; KO mice compared
with WT during continuous
access; repeated swim stress,
but not acute swim stress,
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Gene Reference Sex/background Trait Results
h/day); swim stress effects resulted in higher levels of 21
on EtOH drinking h/day EtOH consumption in
WT mice, but not CRF; KO
mice
CRF, Molander et 129/SvJ x 129/Ola x CD1;  EtOH drinking; two-bottle There was no initial
al. (2012) male choice continuous access for  difference in EtOH
~5 months (2-8% EtOH); consumption between KO and
EtOH vapor (four cycles of WT mice; CRF,; KO mice
16 h/day exposure); swim displayed greater social
and social defeat stress defeat-induced, but not forced
effects on EtOH drinking swim stress-induced,
increased EtOH intake, as
well as greater EtOH WD-
induced increases in EtOH
intake, compared with WT
controls
CRF, Kaur et al. 129/Ola x CD1; male and EtOH drinking; single-bottle  CRF; KO mice had lower
(2012) female DID 2 h/day for 3 days, then EtOH intake and BEC,
4 h/day on day 4 (20% compared with WT mice
EtOH)
CRF, Giardino 129/0la x CD1 EtOH drinking; two-bottle EtOH intake was lower in
and backcrossed to C57BL/6J DID 2 h/day for 3 days, then ~ CRF; KO mice, compared
Ryabinin 4 h/day on day 4 (15% with WT mice; water intake
(2013) EtOH); water and food and total caloric intake were
intake also lower
CRF, NestinCre Molander et 129S2/Sv x SJL x EtOH drinking; two-bottle There was no initial
al. (2012) C57BL/6J choice continuous access for  difference in EtOH
~5 months (2-8% EtOH); consumption between
EtOH vapor (four cycles of CRF,NestinCre KO and WT
16 h/day exposure); swim mice. Stress-induced
and social defeat stress increases in EtOH
effects on EtOH drinking consumption were lower in
CRF,NestinCre KO compared
with controls, and
CRFNestinCre KO mice did not
display EtOH WD-induced
increases in EtOH intake,
whereas controls did
CRF, Nie et al. C57BL/6J x 129 GABA neurotransmission; CRF (100 nM) and EtOH (44
(2004) brain slice electrophysiology =~ mM) each enhanced GABA-
mediated neurotransmission
in the CeA in both WT and
CRF, KO mice
CRF, Sharpe etal.  129X1/Sv] x C57BL/6J EtOH drinking; two-bottle EtOH consumption was
(2005) choice continuous access for  slightly reduced in CRF,
16 days (3-20% EtOH); ina  mice, compared with WT
separate study, single-bottle littermates, at 7.5% and 10%
DID (0.6-10% EtOH; 30 concentrations, during limited
min/day for first 14 daysand  access only
then 2 h/day for 6 days at
10% EtOH)
CRF, Giardino e 129X1/SvJ x C57BL/6J EtOH-induced conditioned The conditioned rewarding
al (2011) place preference (IP 2 g/kg effect of EtOH was absent in
EtOH for 4 EtOH CRF, KO mice, compared
conditioning trials) with WT
CRF, Kaur et al. 129X1/SvJ x C57BL/6J; EtOH drinking; single-bottle  CRF, KO mice had slightly
(2012) male and female DID 2 h/day for 3 days, then  reduced EtOH intake on the
4 h/day on day 4 (20% first day, compared with WT
EtOH) mice; this difference was not
sustained on subsequent days
and not accompanied by
differences in BEC
CRFy, Pastor etal.  C57BL/6J x 129SV/J EtOH-induced locomotor CRFy, KO mice did not show

(2008)

sensitization; IP 2.5 g/kg

EtOH once daily for 10 days,

then IP 1.5 g/kg EtOH

Genes Brain Behav. Author manuscript; available in PMC 2016 April 29.

the EtOH-induced locomotor
sensitization seen in WT mice
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Gene

Reference

Sex/background

Trait

Results

Ucn,

Ucn,

Ucn,

Ucn,

Pastor et al.
(2011)

Pastor et al.
(2008)

Giardino et
al. (2011)

Giardino et
al (2011)

Kaur et al.
(2012)

C57BL/6J x 129SV/J

C57BL/6J x 129SV/]

129X1/SvJ x C57BL/6J

129X1/SvJ x C57BL/6J

129X1/SvJ x C57BL/6J;
male and female

challenge and locomotor test;
BEC and CORT levels

EtOH drinking; two-bottle
choice for 47 days (3-10%
EtOH, 21 h/day); swim stress
effects on EtOH drinking

EtOH-induced locomotor
sensitization; IP 2.5 g/kg
EtOH once daily for 10 days,
then IP 1.5 g/kg EtOH
challenge and locomotor test

EtOH drinking; two-bottle
choice continuous access for
16 days (3-10% EtOH)

EtOH-induced conditioned
place preference and
aversion (IP 2 g/kg EtOH for
four EtOH conditioning
trials)

EtOH drinking; single-bottle
DID 2 h/day for 3 days, then
4 h/day on day 4 (20%
EtOH)

and had a blunted CORT
response to EtOH. BEC levels
did not differ

Repeated swim stress, but not
acute swim stress, resulted in
higher levels of EtOH
consumption in WT, but not
in CRFy, KO mice.

Ucn; KO mice displayed
normal EtOH-induced
locomotor sensitization

Ucn; KO mice consumed less
of a 6%, but not 3% or 10%,
solution, compared with WT
mice; KO mice showed
reduced preference for both
the 6% and 10% EtOH
concentrations, compared
with WT mice

The conditioned rewarding
effect of EtOH was absent in
Ucn; KO mice, compared
with WT; sensitivity to the
conditioned aversive effect of
EtOH was equivalent in the
KO and WT mice

Ucn; KO mice did not differ
from WT mice in EtOH
intake or BEC

BEC, blood ethanol concentration; WD, withdrawal.

Genes Brain Behav. Author manuscript; available in PMC 2016 April 29.
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