290 research outputs found
North Atlantic oscillation response to anomalous Indian Ocean SST in a coupled GCM
The dominant pattern of atmospheric variability in the North Atlantic sector is the North Atlantic Oscillation (NAO). Since the 1970s the NAO has been well characterized by a trend toward its positive phase. Recent atmospheric general circulation model studies have linked this trend to a progressive warming of the Indian Ocean. Unfortunately, a clear mechanism responsible for the change of the NAO could not be given. This study provides further details of the NAO response to Indian Ocean sea surface temperature (SST) anomalies. This is done by conducting experiments with a coupled ocean–atmosphere general circulation model (OAGCM). The authors develop a hypothesis of how the Indian Ocean impacts the NAO
Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern
Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range
Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models
We compare, for the overlapping time frame 1962-2000, the estimate of the
northern hemisphere (NH) mid-latitude winter atmospheric variability within the
XX century simulations of 17 global climate models (GCMs) included in the
IPCC-4AR with the NCEP and ECMWF reanalyses. We compute the Hayashi spectra of
the 500hPa geopotential height fields and introduce an integral measure of the
variability observed in the NH on different spectral sub-domains. Only two
high-resolution GCMs have a good agreement with reanalyses. Large biases, in
most cases larger than 20%, are found between the wave climatologies of most
GCMs and the reanalyses, with a relative span of around 50%. The travelling
baroclinic waves are usually overestimated, while the planetary waves are
usually underestimated, in agreement with previous studies performed on global
weather forecasting models. When comparing the results of various versions of
similar GCMs, it is clear that in some cases the vertical resolution of the
atmosphere and, somewhat unexpectedly, of the adopted ocean model seem to be
critical in determining the agreement with the reanalyses. The GCMs ensemble is
biased with respect to the reanalyses but is comparable to the best 5 GCMs.
This study suggests serious caveats with respect to the ability of most of the
presently available GCMs in representing the statistics of the global scale
atmospheric dynamics of the present climate and, a fortiori, in the perspective
of modelling climate change.Comment: 39 pages, 8 figures, 2 table
Data assimilation in slow-fast systems using homogenized climate models
A deterministic multiscale toy model is studied in which a chaotic fast
subsystem triggers rare transitions between slow regimes, akin to weather or
climate regimes. Using homogenization techniques, a reduced stochastic
parametrization model is derived for the slow dynamics. The reliability of this
reduced climate model in reproducing the statistics of the slow dynamics of the
full deterministic model for finite values of the time scale separation is
numerically established. The statistics however is sensitive to uncertainties
in the parameters of the stochastic model. It is investigated whether the
stochastic climate model can be beneficial as a forecast model in an ensemble
data assimilation setting, in particular in the realistic setting when
observations are only available for the slow variables. The main result is that
reduced stochastic models can indeed improve the analysis skill, when used as
forecast models instead of the perfect full deterministic model. The stochastic
climate model is far superior at detecting transitions between regimes. The
observation intervals for which skill improvement can be obtained are related
to the characteristic time scales involved. The reason why stochastic climate
models are capable of producing superior skill in an ensemble setting is due to
the finite ensemble size; ensembles obtained from the perfect deterministic
forecast model lacks sufficient spread even for moderate ensemble sizes.
Stochastic climate models provide a natural way to provide sufficient ensemble
spread to detect transitions between regimes. This is corroborated with
numerical simulations. The conclusion is that stochastic parametrizations are
attractive for data assimilation despite their sensitivity to uncertainties in
the parameters.Comment: Accepted for publication in Journal of the Atmospheric Science
Impact of variability in the Indian summer monsoon on the East Asian summer monsoon
We report on model experiments that support the hypothesis that the second mode of variability of the East Asian Summer Monsoon is influenced by the variability of the Indian Summer Monsoon. The results suggest that the recent trend towards drier conditions in northern China in summer is, at least partly, a consequence of the synchronous drying trend over India in summer noted by some authors
Systematic Estimates of Decadal Predictability for Six CGCMs
Initial-value predictability measures the degree to which the initial state can influence predictions. In this paper, the initial-value predictability of six atmosphere–ocean general circulation models in the North Pacific and North Atlantic is quantified and contrasted by analyzing long control integrations with time invariant external conditions. Through the application of analog and multivariate linear regression methodologies, average predictability properties are estimated for forecasts initiated from every state on the control trajectories. For basinwide measures of predictability, the influence of the initial state tends to last for roughly a decade in both basins, but this limit varies widely among the models, especially in the North Atlantic. Within each basin, predictability varies regionally by as much as a factor of 10 for a given model, and the locations of highest predictability are different for each model. Model-to-model variations in predictability are also seen in the behavior of prominent intrinsic basin modes. Predictability is primarily determined by the mean of forecast distributions rather than the spread about the mean. Horizontal propagation plays a large role in the evolution of these signals and is therefore a key factor in differentiating the predictability of the various models
Recommended from our members
Irreducible uncertainty in near-term climate projections
Model simulations of the next few decades are widely used in assessments of climate change impacts and as guidance for adaptation. Their non-linear nature reveals a level of irreducible uncertainty which it is important to understand and quantify, especially for projections of near-term regional climate. Here we use large idealised initial condition ensembles of the FAMOUS global climate model with a 1 %/year compound increase in CO2 levels to quantify the range of future temperatures in model-based projections. These simulations explore the role of both atmospheric and oceanic initial conditions and are the largest such ensembles to date. Short-term simulated trends in global temperature are diverse, and cooling periods are more likely to be followed by larger warming rates. The spatial pattern of near-term temperature change varies considerably, but the proportion of the surface showing a warming is more consistent. In addition, ensemble spread in inter-annual temperature declines as the climate warms, especially in the North Atlantic. Over Europe, atmospheric initial condition uncertainty can, for certain ocean initial conditions, lead to 20 year trends in winter and summer in which every location can exhibit either strong cooling or rapid warming. However, the details of the distribution are highly sensitive to the ocean initial condition chosen and particularly the state of the Atlantic meridional overturning circulation. On longer timescales, the warming signal becomes more clear and consistent amongst different initial condition ensembles. An ensemble using a range of different oceanic initial conditions produces a larger spread in temperature trends than ensembles using a single ocean initial condition for all lead times. This highlights the potential benefits from initialising climate predictions from ocean states informed by observations. These results suggest that climate projections need to be performed with many more ensemble members than at present, using a range of ocean initial conditions, if the uncertainty in near-term regional climate is to be adequately quantified
Seasonal-to-decadal predictions with the ensemble Kalman filter and the Norwegian Earth System Model: a twin experiment
Here, we firstly demonstrate the potential of an advanced flow dependent data assimilation method for performing seasonal-to-decadal prediction and secondly, reassess the use of sea surface temperature (SST) for initialisation of these forecasts. We use the Norwegian Climate Prediction Model (NorCPM), which is based on the Norwegian Earth System Model (NorESM) and uses the deterministic ensemble Kalman filter to assimilate observations. NorESM is a fully coupled system based on the Community Earth System Model version 1, which includes an ocean, an atmosphere, a sea ice and a land model. A numerically efficient coarse resolution version of NorESM is used. We employ a twin experiment methodology to provide an upper estimate of predictability in our model framework (i.e. without considering model bias) of NorCPM that assimilates synthetic monthly SST data (EnKF-SST). The accuracy of EnKF-SST is compared to an unconstrained ensemble run (FREE) and ensemble predictions made with near perfect (i.e. microscopic SST perturbation) initial conditions (PERFECT). We perform 10 cycles, each consisting of a 10-yr assimilation phase, followed by a 10-yr prediction. The results indicate that EnKF-SST improves sea level, ice concentration, 2 m atmospheric temperature, precipitation and 3-D hydrography compared to FREE. Improvements for the hydrography are largest near the surface and are retained for longer periods at depth. Benefits in salinity are retained for longer periods compared to temperature. Near-surface improvements are largest in the tropics, while improvements at intermediate depths are found in regions of large-scale currents, regions of deep convection, and at the Mediterranean Sea outflow. However, the benefits are often small compared to PERFECT, in particular, at depth suggesting that more observations should be assimilated in addition to SST. The EnKF-SST system is also tested for standard ocean circulation indices and demonstrates decadal predictability for Atlantic overturning and sub-polar gyre circulations, and heat content in the Nordic Seas. The system beats persistence forecast and shows skill for heat content in the Nordic Seas that is close to PERFECT
The North American Winter \u27Dipole\u27 and Extremes Activity: A CMIP5 Assessment
The 2013–2014 winter in North America brought intense drought in the West and severe cold in the East. The circulation anomalies were characterized as a dipole: an amplified upper-level ridge over the West Coast and a deepened trough over the central-eastern United States. A previous study using a single model has linked the dipole to the El Niño precursor and found that this link has strengthened in recent years. Here, 17 models from the Coupled Model Intercomparison Project Phase 5 are used to examine the dipole activity. Most models capture the dipole and its association with El Niño precursor and project this association to strengthen
- …
