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ABSTRACT

Initial-value predictability measures the degree to which the initial state can influence predictions. In this

paper, the initial-value predictability of six atmosphere–ocean general circulation models in the North Pacific

and North Atlantic is quantified and contrasted by analyzing long control integrations with time invariant

external conditions. Through the application of analog and multivariate linear regression methodologies,

average predictability properties are estimated for forecasts initiated from every state on the control tra-

jectories. For basinwide measures of predictability, the influence of the initial state tends to last for roughly

a decade in both basins, but this limit varies widely among the models, especially in the North Atlantic. Within

each basin, predictability varies regionally by as much as a factor of 10 for a given model, and the locations of

highest predictability are different for each model. Model-to-model variations in predictability are also seen

in the behavior of prominent intrinsic basin modes. Predictability is primarily determined by the mean of

forecast distributions rather than the spread about the mean. Horizontal propagation plays a large role in the

evolution of these signals and is therefore a key factor in differentiating the predictability of the various models.

1. Introduction

Techniques are being developed that enable forecasts

of the evolution of climate over the next few decades to

be initialized from the observed state. This new area of

climate science is referred to as ‘‘decadal prediction’’

(e.g., Meehl et al. 2009). However, the climate system,

being chaotic, is sensitive to small perturbations to the

initial state. Hence, the influence of any particular initial

state on a forecast is discernable for only a finite time.

When one considers how long an initial condition has

a detectable impact, one is studying the initial-value

predictability of the climate system. Our study focuses

on the initial-value predictability properties of models

used to make decadal predictions and how much those

properties vary from one model to another. These at-

tributes should guide the design of decadal prediction

systems and the interpretation of the forecasts they

produce and even help assess whether initializing these

models with the observed state is potentially beneficial.
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Furthermore, model behavior provides an indication of

the possible predictability properties of nature. Model-

to-model variations in predictability represent the uncer-

tainty in these model-based estimates of this important

attribute of nature.

Starting with Griffies and Bryan (1997b,a), various

studies have estimated the predictability of different

models used for decadal forecasts (Collins 2002; Collins

and Sinha 2003; Pohlmann et al. 2004; M. Collins et al.

2006; Msadek et al. 2010; Meehl et al. 2010). Most

studies have concentrated on the meridional over-

turning circulation of the Atlantic, and the predictability

characteristics they have documented have apparently

been highly model dependent. However, careful com-

parison of their results is difficult because different

metrics have often been employed. Furthermore, each

study has used different initial conditions, and it is known

that predictability properties can depend on the initial

state (Pohlmann et al. 2004; Msadek et al. 2010). A few

investigations (e.g., M. Collins et al. 2006) have applied

the same metrics to more than one model but for only

a few initial states, as the ensemble technique that has

been employed for estimating predictability is computa-

tionally expensive. Boer (2000, 2004) has analyzed the

statistics of control runs to produce so-called ‘‘diagnostic

potential predictability.’’ This quantity has the desirable

attribute of taking into account many states, but its con-

nection to initial-value predictability is not well estab-

lished. Alternatively, others (e.g., Newman 2007; Teng and

Branstator 2011) have fitted simple models to control run

behavior and used them to infer predictability properties.

In this study we build on and expand these previous

efforts by applying uniform measures and methods to

six different atmosphere–ocean global climate models

(AOGCMs). Furthermore, rather than the traditional

ensemble approach, we make use of methodologies that

enable us to directly quantify predictability properties

from long control integrations. These methods include

the analog methodology that has been employed in some

studies of atmospheric predictability (Lorenz 1969) and

the use of multivariate regression operators (DelSole

and Tippett 2009b). These techniques enable us to con-

sider the average predictability of each model, where

‘‘average’’ refers to averaging over forecasts beginning

from each initial state in the long control trajectory.

Furthermore, the methods that we employ make it pos-

sible to systematically compare the predictability of many

models without coordinating large, perturbed ensemble

experiments at various institutions.

The six AOGCMs that we consider and some basic

properties of their intrinsic variability are provided in

section 2. In section 3 we describe the measures and

methods we use to infer predictability from control

integrations. Basin and mode predictability character-

istics of the various models are compared in sections 4

and 5, respectively. Section 6 describes three factors that

contribute to the substantial model-to-model variations

in predictability that we find, while conclusions that can

be derived from our findings are presented in section 7.

2. Models and their intrinsic variability

The six AOGCMs in our investigation include

CCSM3, CCSM4, GFDL CM2.1, HadCM3, KCM and

MIROC3.2. All of these models, except CCSM4 and

KCM, have been thoroughly evaluated in the Fourth

Assessment Report (AR4) of the Intergovernmental

Panel on Climate Change (IPCC) (Randall et al. 2007).

Descriptions of the models can be found in the references

given in Table 1, which also includes pertinent infor-

mation about model control runs. In these experiments

the external forcing is fixed at either preindustrial or

present-day levels. Note that for some models we do not

use the early parts of the control runs when the modeled

climate is not close to equilibrium.

In analyzing the predictability of these models, we fo-

cus on the annual mean depth-averaged ocean tempera-

ture between 300 m and the surface, which we refer to as

T0–300. We choose T0–300 because it is somewhat shiel-

ded from weather noise, so its statistics are more robust

than those for sea surface temperature—yet, unlike deeper

layers, it has enough communication with the overlying

atmosphere to potentially influence it on decadal time

scales (Branstator and Teng 2010; Teng et al. 2011).

When examining T0–300, we use fields that have been

interpolated to a common T42 grid. At times we focus on

those aspects of variability that are represented by a

TABLE 1. Description of the six models.

Model* Forcing

Length

(analyzed/total) Reference

CCSM3 Present day 700/1000 W. D. Collins et al.

(2006)

CCSM4 Preindustrial 700/1300 Gent et al. (2011)

GFDL

CM2.1

Preindustrial 2500/3000 Delworth et al. (2006)

HadCM3 Preindustrial 5400/5900 Gordon et al. (2000)

KCM Present day 4200/6700 Park and Latif (2010)

MIROC3.2 Preindustrial 3600/6000 Nozawa et al. (2007)

* CCSM3: Community Climate System Model, version 3

CCSM4: CCSM, version 4

GFDL CM2.1: Geophysical Fluid Dynamics Laboratory Climate

Model version 2.1

HadCM3: Third climate configuration of the Met Office Unified

Model

KCM: Kiel Climate Model

MIROC3.2: Model for Interdisciplinary Research on Climate 3.2
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model’s leading empirical orthogonal functions (EOFs)

and corresponding principal components (PCs) for a given

basin. In this way we concentrate on those characteristics

that are well sampled and have large enough amplitudes

to be of interest. When calculating the EOFs, we use the

control run for each model and incorporate area weighting.

For PC-based calculations we employ values that have

been normalized by their climatological standard deviation.

Before quantifying predictability, we analyze some

properties of intrinsic variability in the various models.

First, we consider the geographical distribution of low-

pass T0–300, as produced by a 5-yr Lanczos filter. This

filter emphasizes the variability one might expect to be

important in our study. In general, the strongest low-

pass variability is located in the North Pacific (208–658N,

1208E–1108W) and North Atlantic (208–758N, 808W–08)

(Fig. 1). This is true not only in each model but also

for an estimate based on the short observational record

(Levitus et al. 2009) (Fig. 1, top). These two basins are the

focus of our study. There is some commonality in low-pass

variability in these basins among the models, most notably

in the existence of variability centers in the vicinity of the

Kuroshio Extension and the North Atlantic subpolar

gyre. On the other hand, there are also substantial dif-

ferences among the various models. For example, a strong

southwest–northeast swath of variability in North Pacific

midlatitudes is present in half of the models and absent in

the other half as well as in the observations.

Another characteristic of intrinsic variability, which

is more closely related to predictability, is its power

spectrum. Averaged power spectra for T0–300 in the

two basins of each of the six models are shown in Fig. 2.

The distinctive red character of the spectra coincides

with the Hasselmann (1976) idea that oceanic climate

variability can be approximated as a white-noise-driven

autoregressive process with memory. The longer the

memory, the more highly predictable is such a process in

the sense that distributions of predictions starting from

the same initial conditions diverge less rapidly in sys-

tems with long memory. At sufficiently long time scales,

the spectrum of a red noise process reaches a plateau.

Leith (1975) and DelSole and Tippett (2009a) reasoned

that within that plateau only the component of vari-

ability that exceeds the plateau value is predictable.

Obvious departures from the plateau are most pro-

nounced in the North Atlantic, but these departures

vary greatly from model to model: HadCM3 and KCM

do not have obvious plateaus; in MIROC3.2 it is reached

only for very low frequencies; and CCSM3 and GFDL

CM2.1 have clear peaks at the high frequency end of the

plateau. Alternatively, one might argue that it is de-

partures from a red spectrum at any point in the spec-

trum, not just from within the white noise plateau, that

should be considered to be potentially predictable. Again,

such departures occur at different frequencies and to

varying degrees in the various models.

The spectral information in Fig. 2 is averaged over

large basins, but spectral characteristics can vary greatly

within a basin. A simple indication of this is seen in

Fig. 3, which shows the e-damping time for each model

at each grid point as derived from fitting exponential

curves to T0–300 autocorrelation values. This charac-

teristic time is one way to encapsulate the redness of the

spectrum with a single number. Strikingly, the regions

with the most persistence vary from model to model.

These substantial model-to-model variations, together

with those in Figs. 1 and 2, indicate the potential for large

contrasts in predictability from one model to another.

3. Methodology

a. Measures

Any complete climate prediction consists of an evolv-

ing distribution of states. Determining the predictability

of the climate system consists of quantifying by how

much and for how long such forecast distributions can be

distinguished from a background distribution. In our

study, when quantifying predictability we use a model’s

climatological distribution of states as that background.

One property of forecast distributions that is of in-

terest is their spread, which we measure by mean square

difference (MSD). MSD is simply one-half of the aver-

age squared Euclidean distance between all pairs of

members of the forecast distribution divided by the

number of state variables. When calculating MSD, states

are represented by vectors of EOF coefficients. Because

we use normalized coefficients, our MSD results would

not change if the patterns used to represent states were

linear combinations of EOFs rather than the EOFs

themselves (Griffies and Bryan 1997b). Typically MSD is

calculated using forecast pairs that are initially very

similar (e.g., when taken from an ensemble of slightly

perturbed states), but, for sufficiently long forecasts, this

quantity approaches a value of one as the pairs become

no more similar than random draws from the climato-

logical distribution.

The second indicator of predictability in our study is

relative entropy (Cover and Thomas 2006), which for

Gaussian distributions is equal to

R 5
1

2
log2(e)

(
ln

"
det(s2

b)

det(s2
f )

#
1 trace(s2

f /s2
b)

1 (mf 2 mb)T(s2
b)21(mf 2 mb) 2 n

)
. (1)
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In (1) mb and mf stand for the mean state vectors in

n-dimensional background and forecast distributions Pb

and Pf, respectively, while s2
b and s2

f correspond to

covariance matrices representing relationships in these

same distributions. As Kleeman (2002), Majda et al.

(2005), and Branstator and Teng (2010) have pointed

out, this quantity is attractive because it can be used for

multivariate forecasts and because it has a well-defined

meaning in information theory. Extensive discussions

of relative entropy are included in the aforementioned

papers and references therein. For the purposes of our

paper, it should be sufficient to understand that relative

FIG. 1. Variance of 5-yr low-pass filtered T0–300 in Levitus et al. observations (during the period of 1955–2009) and in six AOGCM

control run experiments.
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entropy measures the extra information one has about

the state of the climate system by knowing that it is in the

forecast distribution relative to the information one would

have if one assumed it were a member of the climato-

logical distribution. Here information is measured in

terms of the reduced number of binary bits it takes on av-

erage to represent the state. Unless affected by sampling,

relative entropy approaches zero as forecast distribu-

tions approach the climatological distribution.

As we have mentioned, in our study we are interested

in the predictability of a system in terms of average

properties, where averages are taken over predictions

initiated from each state on a system’s attractor. We

refer to such averages as ‘‘attractor averages,’’ denote

them by a double overbar, and approximate them by av-

eraging over all states from a model’s control integration.

As explained in appendix A, for the regression method

of estimating predictability statistics introduced later in

this section,

trace(s2
f /s2

b) 1 (mf 2 mb)T(s2
b)21(mf 2 mb) 2 n 5 0.

(2)

Hence, we can find R by evaluating the attractor average

of the first term in (1), which only involves covariances.

Interestingly, the first term in (1) is equal to the differ-

ence in entropy between distributions Pb and Pf, which

Schneider and Griffies (1999) refer to as ‘‘predictive

information.’’ Because of (2), in our application attractor

averages of predictive information and relative entropy

are the same. The equivalence of these two quantities for

attractor averages has been demonstrated in a more

general context by DelSole (2004).

Kleeman (2002) has proposed that it is useful to dis-

tinguish the contribution resulting from the term

1

2
log2(e)[(mf 2 mb)T(s2

b)21(mf 2 mb)]

in (1) (called the ‘‘signal relative entropy’’) from the

contribution of the remaining terms (called the ‘‘dis-

persion relative entropy’’). When (2) is valid, attractor

averages of these components can be found from the

statistics of covariances of forecast distributions alone.

This does not mean that ensemble means make no con-

tribution to total entropy, but rather their contribu-

tion can be diagnosed from forecast distribution

covariances.

When forecasts are composed of finite ensembles,

predictability can be said to be lost when forecast dis-

tributions are indistinguishable from a background

distribution in terms of some threshold of statistical sig-

nificance (Branstator and Teng 2010; Teng and Branstator

2011). In this study, which does not use ensembles, such

a concept is less meaningful. Instead, we compare MSD

and relative entropy to reference values as an aid in

comparing predictability. For MSD we use 0.60 and 0.90

FIG. 2. Averages of T0–300 power spectra at each grid point in the (left) North Pacific and (right) North Atlantic

with latitudinal weighting. A taper of 10% of the values at each end was applied, and the spectral estimates were

produced by averaging over approximately 7% of the periodogram values. A Fisher transformation was applied to

calculate the domain-averaged 1-yr lag autocorrelation values (www.ncl.ucar.edu/Document/Functions/Shea_util/

specx_ci.shtml), and spectra exceeding the 95% significance level based on these values are shaded. The two vertical

(gray) reference lines denote frequencies corresponding to 30- and 10-yr periods.
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as reference points. For relative entropy we use a value

that is essentially equivalent to a MSD of 0.60. For an

n-dimensional system this value is arrived at by finding

the dispersion relative entropy of a forecast distribution

for which each component has a normalized variance of

0.60 and vanishing covariances, namely,

Rnom
n 5

n

2
log2(e)[ln(1/0:60) 1 0:60 2 1]. (3)

We sometimes refer to this value as representing a

‘‘nominal’’ limit of predictability because it is, in fact, an

arbitrary threshold.

b. Methods

The usual method for assessing the predictability of

a climate model is to use Monte Carlo techniques in

which forecast distributions are approximated by finite

ensembles whose initial members are produced by ran-

domly perturbing an initial state. As we have mentioned,

for practical reasons this approach allows estimation of

predictability for only a handful of initial states, which

may not be representative of general system behavior.

As an alternative, we use two techniques that only re-

quire long control integrations and give estimates of

attractor average predictability.

One of the methods we employ uses analogs. Unlike

our second method, which approximates a system with

a simple model, this approach makes no assumptions

about the dynamics of the system being examined.

Rather, for every year t in the control run we find that

year t9 for which the corresponding control run state,

s(t9), is most similar to s(t). When doing this we only

consider years t9 that are separated from t by at least 50

years, and we measure similarity in terms of gridpoint

Euclidean distance. By calculating the squared differ-

ence between s(t 1 t) and s(t9 1 t) for all such pairs, we

are able to find the attractor average mean square dif-

ference between states t years after they were similar.

Note that this procedure is similar to analyzing the

spread at forecast year t of initially similar pairs of re-

alizations from a Monte Carlo perturbation ensemble

except that it takes into account spread rates from initial

states over the entire attractor rather than for a single

point. Of course, the degree to which the considered

initial states represent the complete system attractor and

the appropriateness of considering the resulting analog

pairs to be small perturbations of each other depends on

the length of the available control experiment.

To test and demonstrate the capabilities of the analog

approach, we compare it to predictability estimates

FIG. 3. The e-damping time of T0–300 at each grid point in the two northern ocean basins, derived by least squares fitting a line to the

logarithm of autocorrelation coefficients. Values in the southwest corner of each basin are the area averages of the e-damping times in that

basin.
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derived from the traditional Monte Carlo method.

Branstator and Teng (2010) reported on the pre-

dictability characteristics of four ensemble experiments

produced by CCSM3. Each of these experiments started

from a different ocean/land state and comprised 40 re-

alizations that were identical except for having either

different initial atmospheric states or tiny perturbations

to the solar constant. The top row of Fig. 4 indicates the

MSD for the leading 10 normalized PCs of T0–300 in the

North Pacific and North Atlantic in each experiment.

By this MSD measure, after less than a decade each

of the ensembles has nearly reached an equilibrium

configuration and is thus equivalent to an ensemble of

random draws. Recall that the MSD value of 0.90

marked with a dashed line in the figure is intended as

a reference point and does not correspond to a particular

significance level.

On that same plot we show the corresponding mea-

sure of attractor average forecast distribution spread

based on analogs from the 700-yr CCSM3 control run.

The blue line shows the MSD for all such pairs and for

their evolution during the succeeding 20 years. To ac-

count for the fact that initially the pairs have finite

separation, we extrapolate MSD curves to earlier times

FIG. 4. Attractor average mean square difference (MSD) of the leading 10 normalized PCs of T0–300 in the (left)

North Pacific and (right) North Atlantic as a function of forecast range. (top) Comparison of MSD from four 40-

member CCSM3 ensemble experiments (dashed lines) and MSD based on analogs from a 700-yr CCSM3 control run

(red and blue solid lines). The blue solid line assumes that the initial spread of the analog pairs roughly agrees with the

perturbation growth after 1 forecast year. After extrapolating the blue curve (indicated by the blue dashed line) to

locate the time range corresponding to zero MSD, we shift the analog MSD curves (blue solid lines) so that MSD

becomes zero at time range zero and the shifted curve is denoted by the red line. (bottom) Comparison of MSD from

the analog pairs [red solid lines, as in (top)] with MSD from multivariate linear regression (MLR) (black line). The

black dotted curves show the attractor average MSD for the MLR operators applied to dependent data, and the black

dashed curves pertain to when they are applied to independent data (appendix B).
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using the Leith (1975) result that, during early stages of

perturbation growth, perturbation variance tends to in-

crease linearly (dashed blue line in Fig. 4). We then shift

the analog MSD curves so that MSD is zero at a forecast

range of zero years (red curve). A similar procedure is

used for all analog results in our study.

Use of different metrics, domains, or variables to se-

lect analogs could modify our results, but the similarity

between the analog results and ensemble results in Fig. 4

indicates that the procedure used here does give good

estimates of the growth rates of perturbations in CCSM3.

Furthermore, in results not shown here, when we have

based our choice of analogs on leading PCs and larger

domains, our results have not changed materially. There

is, however, one prominent difference between the an-

alog results and ensemble results in Fig. 4, namely, the

slow saturation of each ensemble in the North Atlantic

that is not reproduced by the analog method. But, this

feature is forced by changes in greenhouse gas concen-

trations in the ensemble experiments (Branstator and

Teng 2010) and thus should not be reflected in the es-

timates of initial-value predictability that the analog

method produces.

The analog method as we have applied it has the

drawback that it only measures dispersion, but the en-

semble mean also contributes to predictability. For ex-

ample, as is apparent from the definition of relative

entropy (1), a forecast ensemble with the same co-

variances as the climatological distribution can still

contain information if its mean is different from the

climate mean. In fact, as measured by contrasting signal

and dispersion relative entropy, it is not uncommon for

the mean to make a larger contribution to decadal

initial-value predictability than is made by the spread

(Branstator and Teng 2010). Therefore, we employ a

second technique for estimating predictability that

enables us to take into account both contributions. We

refer to it as the multivariate linear regression (MLR)

method.

To understand the MLR method, let EN be the lead-

ing N EOFs of T0–300 in the domain of interest and

consider S, a set consisting of all states s(t) from a control

run that have the same projection onto EN. If M � N,

then it is reasonable to assume that the difference be-

tween the evolution in the control run of the first M PCs

of a particular member of S and the mean evolution of

all members of S is a result of the dispersion of states

with perturbed initial conditions that occurs in a chaotic

system. After all, the members of S differ only for PC

components of an index greater than N, and these gen-

erally have small amplitudes relative to the first M PCs.

Next, assume that for the first M PCs, the value t years

into the future of the ensemble mean of any such S can

be estimated from an M 3 N MLR operator Lt that

is computed from lag-0 and lag-t covariances of the

leading N PCs in the control integration. This is rea-

sonable because regression is designed to predict en-

semble mean behavior. From these two assumptions,

Lts(t) 2 s(t 1 t) estimates the effect of initial perturba-

tions to the evolution of the first M PCs of s(t). Hence, by

calculating Lts(t) 2 s(t 1 t) for all t, the covariance sta-

tistics of perturbed predictions at range t can be esti-

mated. DelSole and Tippett (2009b) have utilized

a similar regression approach to study predictability.

From (1) and (2), these covariances can be used to find

attractor average relative entropy, as well as its signal

and dispersion components.

In addition to being applicable when total relative

entropy is required, the MLR approach is attractive

because it should require less data than the analog

method. The MLR method assumes a particular func-

tional form for system dynamics, and one needs only

enough data to determine the associated parameters

through statistical analysis. By contrast, for the analog

method to be effective, one must have enough data to

find many similar pairs of states, which is known to be

a very data intensive problem for high-dimensional

systems (Van den Dool 1994). On the other hand,

AOGCM evolution is likely to have some nonlinear

behavior that cannot be captured by MLR. Hence, MLR

model errors are not just a consequence of a system’s

sensitivity to initial perturbations, so the estimates of

dispersion they provide are inflated. For this reason, we

consider the MLR results to be fundamentally less re-

liable than those from the analog approach.

Finally, note that the MLR method bears some simi-

larities to the use of linear inverse modeling in pre-

dictability studies (Newman 2007; Alexander et al.

2008), but one difference is that, in linear inverse mod-

eling, a single propagation operator is assumed valid for

all forecast ranges, whereas we construct a different

MLR operator for each forecast range. Hence, unless

the AOGCMs examined here are exactly first-order

Markov processes, in which case the linear inverse

modeling assumption is valid, the MLR operators we

use are necessarily more accurate.

In the results shown in this paper N 5 30 and M 5 10,

but none of our results is affected in any important way if

we use M 5 5 or M 5 20. The value of N was chosen to

maximize the variance predicted by the MLR model

while not overfitting relationships in the finite control

samples. As explained in appendix B, the sensitivity of

our results to sampling has also been minimized by

adapting a strategy suggested by Lorenz (1977).

When our MLR procedure is applied to CCSM3, we

produce the attractor average estimates of MSD for
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PC1–10 shown by the dark black curves in the bottom

panels of Fig. 4. The MLR estimates are very similar to

those from the analog approach, which are also shown in

the bottom panels. Likewise, in results not shown here,

when we have compared univariate attractor average

MSD at each grid point in the North Pacific and North

Atlantic as given by the analog and MLR approaches,

we have found that they are also very similar.

From the similarity of analog and MLR regional and

local MSD values, we draw two conclusions. First, since

the arguments and results of appendix B suggest that our

MLR results are not significantly affected by sampling

errors, it appears that neither are our analog results.

Second, despite its simplifying assumptions, the MLR

method gives results that must be of similar quality to

those from the analog approach. Taking these results

into consideration, in the remainder of our study we use

the analog approach, with its less stringent assumptions,

when considering the MSD measure of predictability,

and we use MLR when signal and total relative entropy

are investigated.

4. Basin predictability

As the first step in quantifying initial-value predict-

ability of the six models in our study, we apply the an-

alog method tested in the previous section to arrive at

attractor average basin MSD values (Fig. 5). Focusing

first on the North Pacific, in the first few years the dif-

ferences among models are modest with differences of

little more than a year for the range at which their spread

reaches 0.60 of the spread of random climatological

draws. But, at longer ranges substantial model-to-

model variations in the growth of MSD are apparent.

For example, CCSM3 and GFDL CM2.1 cross the 0.90

threshold 2–3 yr after the other four models. Variations

in the rates of spreading are even more distinctive in the

North Atlantic. There is a factor of 2 difference in the

range when the models reach 0.60; for CCSM4 this oc-

curs in about 2 yr, while for GFDL CM2.1 it occurs in

slightly less than 4 yr. Model-to-model variations in the

range at which the 0.90 threshold is reached are even

more pronounced. In the model with lowest predict-

ability (CCSM4), it takes 5 yr to reach this threshold,

while the model with highest predictability (KCM) re-

quires 20 yr.

From our analysis of intrinsic variability (Figs. 1 and 3),

we might expect the above basin average results to mask

significant geographical variations in predictability. To

check this possibility, we carry out a series of calculations

in which for each model and for each forecast range we

calculate MSD for all analog pairs at each grid point. We

use these values to find the forecast range at which each

gridpoint MSD reaches 0.60 and find that the statistics of

Fig. 5 do indeed hide substantial variations within each

basin and among the models (Fig. 6).

In the North Pacific, from a basin average perspective,

CCSM3 and GFDL CM2.1 are the models with highest

predictability (Fig. 5), but Fig. 6 shows that this high

predictability is actually concentrated in just a few re-

gions. Interestingly, the location of these regions is dif-

ferent in these two models, with the eastern and northern

FIG. 5. For six AOGCMs, attractor average MSD for the leading 10 normalized PCs of T0–300 in the (left) North

Pacific and (right) North Atlantic found by averaging across all analog pairs in a model’s control run as a function of

forecast range.
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basin perimeter having highest predictability in CCSM3,

while the basin interior has highest predictability in the

GFDL model. Though the North Pacific variations are

subtler in the other models, for them it is also true that

there is almost no commonality in locations of high pre-

dictability. In the North Atlantic, there are also huge

geographical contrasts in predictability and the thresh-

old years span a much larger range. In the most extreme

cases the range varies from 1 yr in some locations to

more than 10 yr in others. In this basin, however, the

structure of these geographical contrasts is somewhat

more organized than in the North Pacific basin. Many of

the models have one band of high predictability in the

subtropics and another to the west of the British Isles.

But even in these regions the year at which the 0.60 thresh-

old is attained varies a great deal from model to model.

Next we turn to relative entropy as estimated from the

MLR method to incorporate both mean signals and

spread when quantifying predictability. Figure 7 dis-

plays the attractor average total relative entropy in each

FIG. 6. As derived from analogs, the forecast years in which the attractor average MSD at each grid point reaches 0.6 of the spread of

random control run draws.

FIG. 7. Attractor average relative entropy as a function of forecast range in the (left) North Pacific and (right)

North Atlantic using 10 leading PCs estimated from the MLR method. The horizontal dashed line indicates Rnom
10

[(3)], which corresponds to the nominal loss of predictability.
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basin for each AOGCM based on 10 PCs. Loosely

speaking, each decrease of one unit of relative entropy

corresponds to a halving of the accuracy with which we

can forecast the state.

Initially information content is extremely large for

each model because we have nearly exact knowledge of

what state the system is in. During the first few years of

the predictions, information rapidly decreases. Between

years 1 and 3, on average, relative entropy is more than

halved in both basins in all models, but the rate at which

information is lost varies considerably from one model

to another. Even after one year there are substantial

differences, and these contrasts continue to expand, as

indicated by the contrasting curvatures. In the North

Pacific, at year 3 there is about a factor of 2 difference in

relative entropy between the models with the most pre-

dictability (GFDL CM2.1) and the least predictability

(CCSM4), corresponding to a difference of more than

two units of relative entropy. In the North Atlantic at

year 3, there is almost a factor of 3 difference between

the models with highest and lowest predictability; con-

sidering the logarithmic character of relative entropy, the

corresponding four unit difference is very substantial.

For reference in Fig. 7, the dotted line signifies a value of

Rnom
10 . This is the information that corresponds to the

0.60 dashed threshold in Fig. 5 and the threshold used to

construct Fig. 6 and also corresponds to our nominal

limit of predictability. In the North Pacific this value is

reached after 5–10 yr. In the North Atlantic some models

reach this value in less than 6 yr, while others retain this

much information in their forecasts for more than 15 yr.

To quantify regional variations in predictability in

terms of information, we consider the geographical

variation of relative entropy. We utilize the same MLR

forecasts employed to construct Fig. 7 but transform the

resulting 10 PC error vectors to gridpoint values and

then calculate the attractor average error variances

needed to evaluate univariate relative entropy. Figure 8

displays the average of these values for forecast years

6–10. Though near the end of the useful range of fore-

casts, we show this range because it is when contrasts

between models are largest. This plot reinforces the

conclusion drawn from Fig. 6 that model and basin dif-

ferences in predictability are largely a reflection of local

features. For example, it is not uncommon for there to

be a factor of 10 difference in the relative entropy within

a single basin in a given model. As far as intermodel

variability is concerned, there is some contrast between

the two basins. In the North Atlantic, as seen when we

considered the forecast spread at intermediate ranges,

there is some consistency among several of the models

in that the subtropics and subpolar gyre tend to be re-

gions of high predictability in many models. But in

extreme cases, such as the difference between CCSM4

and KCM in the northern North Atlantic, even for these

features there can be a factor of 10 contrast. In the North

Pacific, relative entropy serves to reveal that model-

to-model variations are even stronger than in the

North Atlantic. Indeed, with the exception of regions

northeast of Hawaii and south of the Aleutians, no one

location has enhanced predictability in more than two

models.

FIG. 8. Averages for forecast years 6–10 of attractor average univariate relative entropy for gridpoint values of T0–300. These are based on

MLR forecasts of 10 EOFs, which are then transformed to gridpoint values.
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5. Mode predictability

Another useful perspective is to focus on the predict-

ability of each AOGCM’s prominent intrinsic modes.

They are not necessarily the most predictable patterns

(Teng and Branstator 2011; DelSole et al. 2011) as is

sometimes hypothesized, but the fact that they have

high amplitude makes it worthwhile to give them spe-

cial attention. In the previous section, we did use an

EOF representation of the T0–300 field, but this was

done as a means of efficiently representing the data

and not as a way to identify physical modes of each

model. An exhaustive treatment of the predictability

of the modes of our six models is beyond the scope of

our study. Instead, we concentrate on a single T0–300

mode in each basin. To allow for modes whose struc-

ture may be time dependent, we use a complex EOF

(CEOF) analysis (von Storch and Zwiers 1999) to

identify them.

When the leading CEOF in the North Pacific is cal-

culated, we see that it is structurally similar in the vari-

ous models (Fig. 9). In each model one phase, consisting

of a prominent zonally elongated feature extending

eastward from the coast of Japan, and a second feature

of opposite sign along the west coast of North America,

resembles the Pacific decadal oscillation (Mantua et al.

1997). The second phase, which by construction tends to

occur some years later, is made up of a zonally stretched

feature corresponding to an eastward and northward

shift of the zonal feature from the first phase together

with the emergence of an oppositely signed anomaly to

the south. To varying degrees the mode is largely a

standing oscillation, but clearly there is also a propa-

gating component in most models. These same features

exist in CEOF1 from nature (top row of Fig. 9). In ad-

dition to these common features, there are notable

variations in the structure from one model to another,

primarily in the eastern portion of the high amplitude

phase’s east–west anomaly.

The situation in the North Atlantic is rather different

in that there is more model-to-model variability in

CEOF1 (Fig. 10) and propagation plays a much bigger

role in the evolution of the mode, with both phases

having comparable amplitude. In most models there is

a suggestion of eastward propagation of anomalies

originating off the coast of the Maritime Provinces of

Canada and in several models westward propagation

at higher latitudes. But GFDL CM2.1 appears to have

features that propagate in the opposite sense, and

there is no clear propagation in the pattern in nature

(though with only about 50 years of data, the robust-

ness of this pattern is uncertain). Taking into account

CEOF2 in the North Atlantic does not increase the

similarity of patterns among models or between na-

ture and models.

To assess the predictability of these leading modes, we

use the same MLR approach used above except the

resulting errors are projected onto the two patterns of

CEOF1. Figure 11 shows the total relative entropy im-

plied by the covariances of these errors for each model.

With only 2 degrees of freedom it is not surprising that

there is less information in these forecasts than in the

10 PC forecasts in Fig. 7. But, in terms of the forecast

range at which relative entropy reaches the nominal

predictability limit, when considered as a group the

predictability of the modes is qualitatively similar to the

predictability of 10 combined PCs. In the North Pacific,

similar to what we saw for generic structures, the range

at which forecasts of the modes reach Rnom
2 is about

3–8 yr. In the North Atlantic, this threshold value is

reached at a range of between 6 and 20 yr, depending on

the model. We find that the large model-to-model vari-

ations in modal predictability is of similar magnitude to

the variations DelSole et al. (2011) found when com-

paring the predictability of a single, highly predictable

pattern in 14 AOGCMs. Note an implication of the

small values in Fig. 11 compared to those in Fig. 7 is that

basin predictability is not controlled by a single leading

mode.

6. Three distinguishing factors

In this section we highlight three factors that can

substantially enhance the predictability of a system and

that may also help distinguish the predictability char-

acteristics of the various models. The first factor is the

mean of forecast distributions. Often predictability

studies concentrate on distribution spread; however, as

referred to above, earlier investigations have made the

point that the distribution mean can be more important.

Indeed, as appendix C shows, one expects the mean to

dominate information content at long range. This is

borne out when we decompose the attractor average

relative entropy of Fig. 7 into signal and dispersion

components as defined in section 3a (not shown). At

year 1, in both basins for all models the signal contrib-

utes roughly half of the total relative entropy. By year 6,

depending on the model, between 70% and 90% of the

total relative entropy in the North Pacific resides in the

signal, and between 60% and 70% in the North Atlantic

comes from the signal. Beyond year 6 these percentages

continue to grow.

To further quantify the importance of the mean sig-

nals, in Fig. 12 we plot the year that univariate values of

attractor average total relative entropy exceed Rnom
1

based on MLR forecasts. This is the same threshold used
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FIG. 9. CEOF1 of T0–300 in the North Pacific in Levitus et al. observations and six AOGCM control runs. The model CEOFs have been

rotated to maximize their similarity to the pattern from the observations.
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in Fig. 6 when only spread was taken into account.1

Comparing Fig. 12 with Fig. 6, we find that, when the

signal component is included, it is 2–3 times longer be-

fore the nominal predictability limit is reached. Moreover,

the geographical and intermodel variations become more

substantial in Fig. 12, with the time range varying from 2 yr

to as high as 20 yr and more. Hence, when using relative

entropy to measure predictability properties, it is in the

evolution of the mean forecast state that most of the

predictability resides, and by implication it is this com-

ponent of forecast distributions that controls differences

in predictability properties among models.

The second factor affecting predictability is persis-

tence. In the southwest corner of each basin in the Fig. 3

plots of T0–300 e-damping times, the area-average

damping time for that basin is given. The substantial

model-to-model variations in these average measures of

persistence reflect the different degrees of redness of the

spectra in Fig. 2. Comparing these damping times with

the basin predictability properties in Figs. 5 and 7, we see

that there is a tendency for more persistent models to

have higher predictability. For example, in the North

Pacific the most persistent model (GFDL CM2.1) has

the highest predictability and the least persistent model

(CCSM4) has the lowest predictability. Comparison of

prominent local characteristics of persistence in Fig. 3

with geographical distributions of predictability in Figs. 6,

8, and 12 suggests that some, but not all, model-to-model

variations in local predictability are related to local

persistence.

FIG. 10. As in Fig. 9 but for the CEOF1 of T0–300 in the North Atlantic.

1 Note that, if we redo the calculation with covariances set

to zero, we find little difference in the results; differences between

Fig. 6 and Fig. 12 result from the signal, not from the inclusion of

covariances when calculating relative entropy for Fig. 12.
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The third key factor affecting predictability is the

importance of propagation to the evolution of ocean

perturbations. Propagation has been considered an im-

portant mechanism for decadal variability in the ocean

(Meehl et al. 1998; Saravanan and McWilliams 1998),

and its contribution to predictability has been studied by

Kleeman (2002), Power and Colman (2006), and Barlas

et al. (2007). Teng and Branstator (2011) and Teng et al.

(2011) quantified the importance of propagating modes

to the predictability that they found in CCSM3 large

ensemble experiments.

To confirm that propagation is an important factor, we

calculate the signal relative entropy of our models when

propagation is and is not present. Propagation can also

affect dispersion, but this influence is more difficult to

assess with the tools of our study. To estimate attractor

average signal relative entropy for the complete systems,

we simply use (2) and MLR-derived forecast covariances.

FIG. 11. Using the MLR method, attractor average bivariate relative entropy in the (left) North Pacific and (right)

North Atlantic for 1–20-yr forecasts of projections onto CEOF1. The horizontal dashed lines indicate the relative

entropy value Rnom
2 [(3)], which is our nominal limit of predictability.

FIG. 12. Forecast range at which attractor-averaged univariate relative entropy at each grid point derived from the MLR method reaches

Rnom
1 [(3)].
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To estimate the average signal when propagation is not

present, we remove the effect of PC interactions by

constructing univariate MLR operators for each grid

point and for each forecast range and apply them to each

state on a model’s attractor. Given the arguments and

results presented above, it is not surprising that, for the

multivariate calculation, signal relative entropy (Fig. 13,

top row) is very similar to our previous total relative

entropy results (Fig. 7), especially after the first few

years. (This similarity supports our decision to concen-

trate on the signal in our analysis of propagation.) By

comparison (Fig. 13, bottom row), when the effects of

propagation are not included, signals lose their pre-

dictability 2–4 times more rapidly. The univariate op-

erators are able to approximately differentiate the least

from the most predictable models, as could be anti-

cipated from the previous paragraph’s discussion of

persistence and the fact that the univariate operators

represent nothing more than univariate lag correlations.

But differences in predictability among the models are

much less substantial when only damping times are af-

fecting the results. Hence, it appears that propagation

characteristics are key to quantifying model-to-model

variations in predictability.

FIG. 13. (top) Attractor average signal component of relative entropy of the (left) North Pacific and (right) North

Atlantic, using 1–20-yr forecasts of the 10 leading PCs from the MLR method. (bottom) As in the top row, but the

MLR operator is replaced with a univariate regression operator. The horizontal dashed lines indicate Rnom
10 [(3)],

which indicates the nominal loss of predictability.
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7. Conclusions

Through analysis of long control integrations with

time invariant external conditions, we have quantified

the predictability properties of six climate models to 1)

help determine whether it is worthwhile to initialize

decadal predictions with the observed state of the cli-

mate system, 2) assess how much model-to-model vari-

ability there is in the initial-value predictability limits of

comprehensive AOGCMs, and 3) set a lower bound on

the uncertainty of AOGCM estimates of the predictabil-

ity properties of nature.

Our calculations indicate that by basinwide measures,

for a typical initial condition and for a typical model,

predictability in upper-ocean conditions resulting from

initializing with a specific state nominally lasts for ap-

proximately a decade in the North Atlantic and some-

what less in the North Pacific. Of course these limits

depend on how one defines ‘‘nominal.’’ Here we have

arbitrarily defined it to mean that a forecast distribution

has as much information as is contained in the spread of

a distribution whose variance is 60% of the climatolog-

ical distribution.

A second finding of our study is that for a given

AOGCM the predictability properties of the upper

ocean vary geographically by large amounts within the

North Pacific and North Atlantic basins. For example,

the relative entropy in forecasts at the decadal range

varied by factors of 10 within each basin in five of the six

models that we investigated. However, we found less

variability among the predictability of prominent modes

of a given model than one might expect in that the

leading mode in a basin is not necessarily substantially

more predictable than a generic pattern.

Given the presence of regional predictability at ranges

well beyond a few years, even in the model with least

predictability, our investigation serves to further sub-

stantiate the implication of other studies that there is

merit in devoting resources to develop the capability to

initiate decadal range forecasts with the observed state

of the climate system.

On the other hand, our results indicate that quantifi-

cation of the value in added skill that is potentially re-

alizable as a result of initializing decadal forecasts is

highly uncertain because there are large model-to-model

variations in ocean predictability. For example, the typi-

cal nominal basinwide limits referred to above are actu-

ally midpoints in a range of values between 4 and 10 yr

for the North Pacific and 5 and 19 yr for the North At-

lantic, depending on the model chosen. Similarly, for some

locations some models can differ from each other in the

information content of their decadal forecasts by as much

as a factor of 10. And there are also wide model-to-model

differences in the structure and predictability of the

leading basin modes.

That initial-value predictability varies a great deal

from model to model and from location to location was

anticipated by our analysis of the intrinsic variability of

each model in that we found very substantial model and

geographical differences in the amplitude and temporal

characteristics of decadal time-scale fluctuations. It

turned out that the most important model-to-model

predictability differences arose from differences in how

ensemble means evolved in their predictions rather than

in the spread about prediction means. To a certain ex-

tent, contrasts in the evolution of means were a reflec-

tion of differing degrees of persistence in the models.

However, even more important in distinguishing model

predictability traits was how they treated the propaga-

tion of mean signals.

Given the large model-to-model differences that we

have quantified, a second conclusion of our study is that

any comprehensive program aimed at the decadal pre-

diction problem needs to carefully assess the pre-

dictability of the model it uses and take this assessment

into account when designing its prediction system and

interpreting the resulting predictions. For example, the

maximum range of predictions that rely on information

in the initial state for skill could be bound in this way.

Furthermore, because the observational record is short,

estimates of the decadal predictability properties of

nature from observations alone are inadequate, so model

predictability must be used as a guide. For this reason,

an additional implication of the model-to-model differ-

ences documented here is that currently there is great

uncertainty as to the predictability properties of nature

on decadal time scales.

Since our study implies that it is important to assess

the predictability of every model used for decadal

forecasts, we think our demonstration that systematic

estimates of predictability can be determined without

recourse to computationally expensive ensemble exper-

iments is useful. Either through use of analogs or mul-

tivariate linear regression, estimates can be made that

represent the average initial-value predictability of a

model for essentially all initial conditions on the model’s

attractor. Both methodologies make it possible to sys-

tematically compare model predictability properties

without using highly coordinated projects, though for

a particular application one or the other has specific

advantages.

Finally, we note that though large model-to-model

differences like those we have found are likely to also

exist for aspects of the model state that we have not

considered, the specific predictability limits found here

may turn out to be very different for other variables,
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depths, regions, and phenomena. Of particular interest

is whether the ocean predictability that we have docu-

mented carries over to atmospheric predictability. For

CCSM3, Teng et al. (2011) found that the imprint of

Atlantic Ocean predictability on the atmosphere was

weak, but of course this aspect of predictability may also

vary from model to model and is poorly understood in

the observed climate system.
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APPENDIX A

Attractor Average Relative Entropy

Suppose si, at times i 5 1, . . . , T, are n-dimensional

reduced state vectors from an AOGCM’s control in-

tegration of length T, and let Lt be the linear regression

operator that predicts si1t from si. Then, using symbols

from section 3a and defining x2 5 xxT for vector x,
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Here we have used the fact that regression errors are

uncorrelated with predictands, as well as our assumption

that regression gives perfect forecasts of the evolution

of AOGCM means. Recognizing the identity tr(x2A) 5

xTAx for matrix A, (2) follows in the limit of large T.

APPENDIX B

Multivariate Linear Regression Model Errors

We construct models that predict future T0–300 states

of an AOGCM by using standard multivariate linear

regression (MLR) formulas. Lorenz (1977) has consid-

ered the problem of estimating the statistics of errors

from MLR predictions. Suppose one has a finite dataset

produced by a process and subdivides it into partition A1

and partition A2 and then constructs a regression oper-

ator based on A1. If that operator is applied to A1, the

resulting errors will underestimate the true error vari-

ance, while the errors resulting from its application to A2

will be an overestimate. Lorenz has demonstrated,

however, that the geometric mean of these two esti-

mates will be a good approximation to the true error

variance. (By ‘‘true error’’ we mean the error variance

that would result if we used an infinite dataset produced

by the process.) Our tests suggest that, with one modifi-

cation, the Lorenz approach can be adapted to covariance

estimation. If the two estimates of error variance are not

too different from the true error, then their geometric

and arithmetic means will be similar. But, an arithmetic

mean has the advantage that it can also be applied to

estimates of covariance, which may be negative.

Using the Lorenz method, but with arithmetic means,

we estimate the true error covariances of MLR opera-

tors as follows. We first divide a control dataset into five

equal partitions A1, . . . , A5. Then for each k, we con-

struct an operator using data from all partitions except

Ak and evaluate its errors and their covariances when it

is applied 1) to those same four partitions and 2) to Ak.

Averaging these 10 error covariances gives us our esti-

mate of the true error covariances.

As a test of this procedure we apply it to CCSM3. The

dotted curves in the bottom panels of Fig. 4 show the

attractor average MSD errors for the five operators ap-

plied to dependent data. The dashed curves pertain to

when they are applied to independent data. It is when one

takes the average of these two curves (solid black curve)

that the regression errors match the analog estimates.

As a further test of whether our approach gives error

covariance estimates with acceptable errors, we divide

each model’s control dataset into two halves and repeat

our calculation of basin values of relative entropy in

Fig. 7 for each half. In all cases (not shown), values based

on the two halves are very similar to each other and to

the values in Fig. 7. For example, the year at which most
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individual models reach saturation differ by no more than

about one-half year. Even the most sensitive saturations

times—namely, in the North Pacific for the models with the

shortest control integrations (CCSM3 and CCSM4)—differ

by less than a year for the two dataset halves.

APPENDIX C

Attractor Average Dispersion versus Signal
Relative Entropy

If one considers the definition of relative entropy (1)

and its decomposition into signal relative entropy and

dispersion relative entropy proposed by Kleeman (2002),

then attractor averages of the signal component are gen-

erally expected to be larger than attractor averages of

the dispersion component. For, to the extent that projec-

tions of forecast distributions onto two different EOFs

have vanishing covariance (which they must at long fore-

cast range for a transitive dynamical system), (2) implies

that total, signal, and dispersive relative entropy are

each a simple function of the ratios of forecast PC var-

iances and their climatological variance. When (1) is

evaluated under these assumptions, signal becomes the

increasingly dominant component of relative entropy as

the variance ratio approaches unity. For example, when

the variance ratio is 0.30 for each PC, signal is 58% of the

total relative entropy; when the ratio is 0.60, it is 78%; and

when the ratio is 0.90, it is 95%. Since relative entropy is

invariant to linear transformations of the state vector,

this result does not depend on the use of an EOF basis.
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