505 research outputs found

    Stable bundles on hypercomplex surfaces

    Full text link
    A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite torsion. In the language of Hitchin's and Gualtieri's generalized complex geometry, (4,4)-manifolds are called ``generalized hyperkaehler manifolds''. We show that the moduli space of anti-self-dual connections on M is a (4,4)-manifold if M is equipped with a (4,4)-structure.Comment: 17 pages. Version 3.0: reference adde

    Photon-Photon and Pomeron-Pomeron Processes in Peripheral Heavy Ion Collisions

    Get PDF
    We estimate the cross sections for the production of resonances, pion pairs and a central cluster of hadrons in peripheral heavy-ion collisions through two-photon and double-pomeron exchange, at energies that will be available at RHIC and LHC. The effect of the impact parameter in the diffractive reactions is introduced, and imposing the condition for realistic peripheral collisions we verify that in the case of very heavy ions the pomeron-pomeron contribution is indeed smaller than the electromagnetic one. However, they give a non-negligible background in the collision of light ions. This diffractive background will be more important at RHIC than at LHC.Comment: 22 pages, 1 Postscript figures, 4 tables, to appear in Phys. Rev.

    f0(980) meson as a K bar K molecule in a phenomenological Lagrangian approach

    Full text link
    We discuss a possible interpretation of the f0(980) meson as a hadronic molecule - a bound state of K and bar K mesons. Using a phenomenological Lagrangian approach we calculate the strong f0(980) to pi pi and electromagnetic f0(980) to gamma gamma decays. The compositeness condition provides a self-consistent method to determine the coupling constant between f0 and its constituents, K and bar K. Form factors governing the decays of the f0(980) are calculated by evaluating the kaon loop integrals. The predicted f0(980) to pi pi and f0(980) to gamma gamma decay widths are in good agreement with available data and results of other theoretical approaches.Comment: 21 pages, 11 figures, revised version accepted for publication in Eur. Phys. J.

    Pseudo-hyperkahler Geometry and Generalized Kahler Geometry

    Full text link
    We discuss the conditions for additional supersymmetry and twisted supersymmetry in N = (2, 2) supersymmetric non-linear sigma models described by one left and one right semi-chiral superfield and carrying a pair of non-commuting complex structures. Focus is on linear non-manifest transformations of these fields that have an algebra that closes off-shell. We find that additional linear supersymmetry has no interesting solution, whereas additional linear twisted supersymmetry has solutions with interesting geometrical properties. We solve the conditions for invariance of the action and show that these solutions correspond to a bi-hermitian metric of signature (2, 2) and a pseudo-hyperkaehler geometry of the target space.Comment: Letters in Mathematical Physics : electronically published versio

    Primordialists and Constructionists: a typology of theories of religion

    Get PDF
    This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research

    Using screen video capture software to aide and inform cognitive interviewing

    Get PDF
    Web-based surveys are a salient tool in the repertoire of social and behavioral scientists. The increase in web-based surveys is understandable considering the distinct advantages offered, including: (a) lower costs and reduced labor time, (b) ability to directly transfer data into statistical packages (reducing coding errors), (c) customization options enabling more attractive presentation, (d) ability to reduce respondent burden by embedding skip patterns, and (e) access to larger sample sizes in different geographic regions. It is important to note, however, that administering web-based surveys also introduces distinct sources of error (e.g., coverage, sampling and non-response). Regardless of format (e.g., paper-and-pencil or web-based), specific, prescribed steps must be followed when constructing an instrument in order to reduce survey error and lend credence to the data collected before subsequent analysis is performed. One of those crucial stages integral to the pretesting process is cognitive interviewing. Cognitive interviewing is a qualitative process, encompassing two main techniques: think aloud interviewing and verbal probing. Collectively, these two methods seek to (a) produce information on what the respondent is thinking while answering the questions, (b) the cognitive processes used to answer the questions, and (c) how the respondent answers the questions. The purpose of this article is to provide a practical guide outlining how Camtasia, a screen video capture software, can aide and inform the cognitive interview process

    Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity

    Full text link
    From the beginning of the subject, calculations of quantum vacuum energies or Casimir energies have been plagued with two types of divergences: The total energy, which may be thought of as some sort of regularization of the zero-point energy, 12ω\sum\frac12\hbar\omega, seems manifestly divergent. And local energy densities, obtained from the vacuum expectation value of the energy-momentum tensor, T00\langle T_{00}\rangle, typically diverge near boundaries. The energy of interaction between distinct rigid bodies of whatever type is finite, corresponding to observable forces and torques between the bodies, which can be unambiguously calculated. The self-energy of a body is less well-defined, and suffers divergences which may or may not be removable. Some examples where a unique total self-stress may be evaluated include the perfectly conducting spherical shell first considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric balls and cylinders. In these cases the finite part is unique, yet there are divergent contributions which may be subsumed in some sort of renormalization of physical parameters. The divergences that occur in the local energy-momentum tensor near surfaces are distinct from the divergences in the total energy, which are often associated with energy located exactly on the surfaces. However, the local energy-momentum tensor couples to gravity, so what is the significance of infinite quantities here? For the classic situation of parallel plates there are indications that the divergences in the local energy density are consistent with divergences in Einstein's equations; correspondingly, it has been shown that divergences in the total Casimir energy serve to precisely renormalize the masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore