69 research outputs found

    Carbon-13 in groundwater from English and Norwegian crystalline rock aquifers: a tool for deducing the origin of alkalinity?

    Get PDF
    The 13C signature is evaluated for various environmental compartments (vegetation, soils, soil gas, rock and groundwater) for three crystalline rock terrains in England and Norway. The data are used to evaluate the extent to which stable carbon isotopic data can be applied to deduce whether the alkalinity in crystalline bedrock groundwaters has its origin in hydrolysis of carbonate or silicate minerals by CO2. The resolution of this issue has profound implications for the role of weathering of crystalline rocks as a global sink for CO2. In the investigated English terrain (Isles of Scilly), groundwaters are hydrochemically immature and DIC is predominantly in the form of carbonic acid with a soil gas signature. In the Norwegian terrains, the evidence is not conclusive but is consistent with a significant fraction of the groundwater DIC being derived from silicate hydrolysis by CO2. A combined consideration of pH, alkalinity and carbon isotope data, plotted alongside theoretical evolutionary pathways on bivariate diagrams, strongly suggests real evolutionary pathways are likely to be hybrid, potentially involving both open and closed CO2 conditions

    Comparing the fate and transport of MS2 bacteriophage and sodium fluorescein in a karstic chalk aquifer

    Get PDF
    Groundwater flow and contaminant migration tracing is a vital method of identifying and characterising pollutant source-pathway-receptor linkages in karst aquifers. Bacteriophages are an attractive alternative tracer to non-reactive fluorescent dye tracers, as high titres (>10¹² pfu mL−¹) can be safely released into the aquifer, offering improved tracer detectability. However, the interpretation of bacteriophage tracer breakthrough curves is complicated as their fate and transport are impacted by aquifer physicochemical conditions. A comparative tracer migration experiment was conducted in a peri-urban catchment in southeast England to characterise the behaviour of MS2 bacteriophage relative to sodium fluorescein dye in a karstic chalk aquifer. Tracers were released into a stream sink and detected at two abstraction boreholes located 3 km and 10 km away. At both sites, the loss of MS2 phage greatly exceeded that of the solute tracer. In contrast, the qualitative shape of the dye and phage breakthrough curves were visually very similar, suggesting that the bacteriophage arriving at each site was governed by comparable transport parameters to the non-reactive dye tracer. The colloid filtration theory was applied to explain the apparent contradiction of comparable tracer breakthrough patterns despite massive phage losses in the subsurface. One-dimensional transport models were also fitted to each breakthrough curve to facilitate a quantitative comparison of the transport parameter values. The model results suggest that the bacteriophage migrates through the conduit system slightly faster than the fluorescent dye, but that the former is significantly less dispersed. These results suggest that whilst the bacteriophage tracer cannot be used to predict receptor concentrations from transport via karstic flow paths, it can provide estimates for groundwater flow and solute contaminant transit times. This study also provides insight into the attenuation and transport of pathogenic viruses in karstic chalk aquifers

    Iso-Wetlands: unlocking wetland ecologies and agriculture in prehistory through sulfur isotopes

    Get PDF
    Iso-Wetlands is a new, NERC-funded collaborative research project involving researchers at UCL Institute of Archaeology, the University of Leeds and the UK Centre for Ecology and Hydrology. The project is developing sulfur isotope analysis of archaeological plants and animals as a new tool for exploring hydrological conditions under which agricultural production was taking place. This development has the potential to improve understanding of water management strategies in the past, particularly in relation to seasonal floodwater agriculture and wetland agriculture (for example, rice paddy systems). The project will open wider possibilities for the use of sulfur isotopes in archaeology and ecology to examine wetland habitat use by both people and animals

    GEOCHEMICAL CHARACTERISTICS OF REDUCED INORGANIC SULFUR IN A COASTAL ENVIRONMENT, BOHAI BAY, CHINA

    Get PDF
    Geochemical cycling of reduced inorganic sulfur in sediments may affect water quality. This study investigated the reduced inorganic sulfur distribution and environmental behaviour in superficial sediments in different watersheds and coastal zones in Bohai Bay, China. Acid volatile sulfur (AVS), chromium (II)-reducible sulfur (CRS) and elemental sulfur (ES) distributed in surface sediment were quantified. Total organic carbon and total nitrogen were presented in higher concentrations in the fluvial sediment than the coastal sediment, and were also higher in both types of site in the north compared to the south of Bohai Bay. The composition of reduced inorganic sulfur (RIS) in surface sediment was dominated by CRS and AVS (39% and 38% of the total RIS, respectively), with ES only accounting for 23% of the total. In marine sediments, sulphate reduction and formation of sulphides were controlled by TOC, and the high organic content stabilized a large proportion of the sulphide as AVS. Conversely, in fluvial sediments, sulphide formation was limited by the availability of sulphate.Geochemical cycling of reduced inorganic sulfur in sediments may affect water quality. This study investigated the reduced inorganic sulfur distribution and environmental behaviour in superficial sediments in different watersheds and coastal zones in Bohai Bay, China. Acid volatile sulfur (AVS), chromium (II)-reducible sulfur (CRS) and elemental sulfur (ES) distributed in surface sediment were quantified. Total organic carbon and total nitrogen were presented in higher concentrations in the fluvial sediment than the coastal sediment, and were also higher in both types of site in the north compared to the south of Bohai Bay. The composition of reduced inorganic sulfur (RIS) in surface sediment was dominated by CRS and AVS (39% and 38% of the total RIS, respectively), with ES only accounting for 23% of the total. In marine sediments, sulphate reduction and formation of sulphides were controlled by TOC, and the high organic content stabilized a large proportion of the sulphide as AVS. Conversely, in fluvial sediments, sulphide formation was limited by the availability of sulphate

    Population density modifies the ecological impacts of invasive species

    Get PDF
    In assessments of ecological impact in invasion ecology, most studies compare un-invaded sites with highly invaded sites, representing the ‘worst-case scenario’, and so there is little information on how impact is modified by the population density of the invader. Here, we assess how ecological impact is modified by population density through the experimental development of density-impact curves for a model invasive fish. Using replicated mesocosms and the highly invasive Pseudorasbora parva as the model, we quantified how their population density influenced their diet composition and their impacts on invertebrate communities and ecosystem processes. The density-impact curves revealed both linear and non-linear density-impact relationships. The relationship between P. parva density and zooplankton body mass was represented by a low-threshold curve, where their impact was higher at low densities than predicted by a linear relationship. In contrast, whilst the relationship between density and zooplankton biomass and abundance was also non-linear, it was high-threshold, indicating a lower impact than a linear relationship would predict. Impacts on diversity and phytoplankton standing stock were linear and impacts on benthic invertebrate abundance and decomposition rates were represented by s-shaped curves. These relationships were underpinned by P. parva dietary analyses that revealed increasing reliance on zooplankton as density increased due to depletion of other resources. We caution against the common assumption that ecological impact increases linearly with invader density and suggest that increased understanding of the relationship between invader population density and ecological impact can avoid under-investment in the management of invaders that cause severe problems at low densities

    Impacts of selective logging on insectivorous birds in Borneo: The importance of trophic position, body size and foraging height

    Get PDF
    Habitat destruction and degradation are major drivers of biodiversity loss and attention is increasingly focused on how different traits of species affect their vulnerability. Dietary traits are critical in this respect, and are typically examined by assigning species to different feeding and foraging guilds. However, such guilds may mask large variation in species' trophic interactions, limiting our understanding of species' responses. Here we use stable isotopes to quantify trophic positions within a Family of insectivorous understory birds, the Timaliidae (babblers), within Bornean rainforests. We then relate changes in species' abundances following intensive selective logging of forest to their trophic positions, body sizes and foraging heights. We found that trophic positions within this single feeding guild spanned more than an entire trophic level. Moreover, changes in abundance following logging were significantly and independently related to mean trophic position in primary forest, body size and foraging height: large ground-feeding species occupying high trophic positions were more adversely affected than small understory-feeders with lower trophic positions. These three variables together explained 81% of the variance in species' responses to logging. The single most important predictor, however, was a species' mean trophic position. Species recorded in both habitats also had significantly higher trophic positions in logged forest. These data provide critical new understanding of species' responses to disturbance. They also indicate previously unrecognised functional changes to species assemblages following logging, highlighting the importance of numerical assessments of trophic position within individual feeding guilds

    The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica

    Get PDF
    The Cretaceous–Paleogene (K–Pg) mass extinction event 66 million years ago led to large changes to the global carbon cycle, primarily via a decrease in primary or export productivity of the oceans. However, the effects of this event and longer-term environmental changes during the Late Cretaceous on the global sulfur cycle are not well understood. We report new carbonate associated sulfate (CAS) sulfur isotope data derived from marine macrofossil shell material from a highly expanded high latitude Maastrichtian to Danian (69–65.5 Ma) succession located on Seymour Island, Antarctica. These data represent the highest resolution seawater sulfate record ever generated for this time interval, and are broadly in agreement with previous low-resolution estimates for the latest Cretaceous and Paleocene. A vigorous assessment of CAS preservation using sulfate oxygen, carbonate carbon and oxygen isotopes and trace element data, suggests factors affecting preservation of primary seawater CAS isotopes in ancient biogenic samples are complex, and not necessarily linked to the preservation of original carbonate mineralogy or chemistry. Primary data indicate a generally stable sulfur cycle in the early-mid Maastrichtian (69 Ma), with some fluctuations that could be related to increased pyrite burial during the ‘mid-Maastrichtian Event’. This is followed by an enigmatic +4‰ increase in δ³⁴SCAS during the late Maastrichtian (68–66 Ma), culminating in a peak in values in the immediate aftermath of the K–Pg extinction which may be related to temporary development of oceanic anoxia in the aftermath of the Chicxulub bolide impact. There is no evidence of the direct influence of Deccan volcanism on the seawater sulfate isotopic record during the late Maastrichtian, nor of a direct influence by the Chicxulub impact itself. During the early Paleocene (magnetochron C29R) a prominent negative excursion in seawater δ³⁴S of 3–4‰ suggests that a global decline in organic carbon burial related to collapse in export productivity, also impacted the sulfur cycle via a significant drop in pyrite burial. Box modelling suggests that to achieve an excursion of this magnitude, pyrite burial must be reduced by >15%, with a possible role for a short term increase in global weathering rates. Recovery of the sulfur cycle to pre-extinction values occurs at the same time (∼320 kyrs) as initial carbon cycle recovery globally. These recoveries are also contemporaneous with an initial increase in local alpha diversity of marine macrofossil faunas, suggesting biosphere-geosphere links during recovery from the mass extinction. Modelling further indicates that concentrations of sulfate in the oceans must have been 2 mM, lower than previous estimates for the Late Cretaceous and Paleocene and an order of magnitude lower than today

    The hydrogeology and hydrochemistry of the thermal waters at Taffs Well, South Wales, UK

    Get PDF
    Taffs Well is the only thermal spring in Wales, with an average temperature of 21.6°C ± 0.5°C. The River Taff is adjacent to the spring and removal of a weir and work on flood defences has reduced mixing with flood water from the river. This has enabled data to be gathered that more closely represent the thermal water end-member than previously possible. Limited interaction with modern waters is confirmed by tritium, nitrate, CFC and SF6 concentrations below or close to lower detection limits, showing at most 6% mixing with modern waters. 14C dating suggests a conservative age estimate of at least 5000 years. Values for dissolved noble gases suggest that the waters originate as rainfall at an altitude several hundred metres higher than the spring. The northern Carboniferous Limestone outcrop is proposed, which would then require recharged waters to flow to a depth of 400m and distance of 25km, following the synclinal structure of the South Wales Coalfield, to discharge at the spring. Sr isotope data suggest interaction with the Marros Group (formerly known as the Millstone Grit), the waters flowing within or close to the contact between the Carboniferous Limestone and Marros Group before rising via the Tongwynlais Fault
    corecore