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Warming of ground is causing microbial decomposition of previously frozen sedimentary
organic carbon in Arctic permafrost. However, the heterogeneity of the permafrost
landscape and its hydrological processes result in different biogeochemical processes
across relatively small scales, with implications for predicting the timing and magnitude
of permafrost carbon emissions. The biogeochemical processes of iron- and sulfate-
reduction produce carbon dioxide and suppress methanogenesis. Hence, in this study,
the biogeochemical processes occurring in the active layer and permafrost of a high
Arctic fjord valley in Svalbard are identified from the geochemical and stable isotope
analysis of aqueous and particulate fractions in sediment cores collected from ice-
wedge polygons with contrasting water content. In the drier polygons, only a small
concentration of organic carbon (<5.40 dry weight%) has accumulated. Sediment
cores from these drier polygons have aqueous and solid phase chemistries that
imply sulfide oxidation coupled to carbonate and silicate dissolution, leading to high
concentrations of aqueous iron and sulfate in the pore water profiles. These results
are corroborated by δ34S and δ18O values of sulfate in active layer pore waters, which
indicate the oxidative weathering of sedimentary pyrite utilising either oxygen or ferric
iron as oxidising agents. Conversely, in the sediments of the consistently water-saturated
polygons, which contain a high content of organic carbon (up to 45 dry weight%),
the formation of pyrite and siderite occurred via the reduction of iron and sulfate.
δ34S and δ18O values of sulfate in active layer pore waters from these water-saturated
polygons display a strong positive correlation (R2 = 0.98), supporting the importance
of sulfate reduction in removing sulfate from the pore water. The significant contrast
in the dominant biogeochemical processes between the water-saturated and drier
polygons indicates that small-scale hydrological variability between polygons induces
large differences in the concentration of organic carbon and in the cycling of iron
and sulfur, with ramifications for the decomposition pathway of organic carbon in
permafrost environments.

Keywords: permafrost, biogeochemistry, iron-sulfur, carbon, Svalbard
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INTRODUCTION

Permafrost regions account for 24% of the land area of the
Northern Hemisphere and store immense quantities (1330 to
1580 Pg) of organic carbon (Tarnocai et al., 2009; Hugelius et al.,
2014). Permafrost ecosystems are currently a net sink of carbon,
due to the drawdown of carbon dioxide exceeding emissions of
methane and carbon dioxide (Schaefer et al., 2011; Kirschke et al.,
2013; Parmentier et al., 2013). As rapid climate change occurs in
the high Arctic, rising permafrost temperatures and progressively
deeper active layers are exposing previously frozen soil organic
carbon to microbial decomposition (Romanovsky et al., 2010;
Koven et al., 2011; Schuur et al., 2015). This releases carbon
dioxide and methane to the atmosphere and is predicted to cause
permafrost ecosystems to become a net carbon source by themid-
2020s (Lee et al., 2012; Elberling et al., 2013; Schuur et al., 2015).

To predict the impact of permafrost thaw on biogeochemical
cycling, it is necessary to understand the spatial heterogeneity
of biogeochemical processes in Arctic soils. The distribution of
stored organic carbon varies across the permafrost landscape, and
with depth (Kuhry et al., 2010). Organic carbon accumulation
and storage in permafrost is maximised in regions where
waterlogged conditions dominate, as under these conditions,
net primary production exceeds decomposition (Kolka et al.,
2015). Hydrology exerts a powerful influence on the type of
gaseous products released from decomposing permafrost organic
carbon. For example, drained soil allows previously frozen
organic carbon to decompose rapidly under oxic conditions,
producing carbon dioxide (Liljedahl et al., 2012; Elberling
et al., 2013), whereas water saturation limits the oxygen supply
and enhances anaerobic respiration and methane production
(Turetsky et al., 2008; Lipson et al., 2012; Olefeldt et al.,
2013). However, under anaerobic conditions, alternative electron
acceptors such as nitrate, manganese, iron and sulfate may
be used preferentially in the microbial respiration of organic
carbon, and inhibit the production of methane (Kristjansson and
Schönheit, 1983; Dise and Verry, 2001). The use of alternative
electron acceptors increases carbon dioxide production relative
to methane, and hence the coupling between hydrology
and the availability of alternative electron acceptors plays
a crucial role in determining the magnitude of permafrost
carbon emissions.

Hodson et al. (2016) conducted hydrological monitoring that
demonstrated how lowland runoff draining the reactive, fine-
grained sediments of Svalbard’s Central Tertiary Basin (i.e.,
Adventdalen, the site of the present study) acquires reactive
iron from pyrite oxidation. Pyrite oxidation exerted a major
control upon the composition of this runoff, as evidenced by the
presence of high sulfate and cation concentrations (Hodson et al.,
2016). This process has also been documented in several nearby
catchments (Fardalen, Bolterdalen and Longyeardalen; Yde et al.,
2008; Rutter et al., 2011; Hindshaw et al., 2016). Therefore,
sediments and water in Adventdalen and the surrounding area
have an abundance of alternative electron acceptors, such as
ferric iron and sulfate, for the microbial oxidation of organic
carbon. The abundance of ferric iron and sulfate in the waters
draining through Adventdalen is important in the context of

greenhouse gas emissions because Fe(III)- and sulfate-reduction
are thermodynamically favourable, and therefore competitive,
relative to methanogenesis. The availability of Fe(III) has been
reported to decrease methanogenesis in the permafrost landscape
of Barrow, Alaska (Lipson et al., 2012; Miller et al., 2015)
and the availability of sulfate can decrease methane production
in wetlands (e.g., Pester et al., 2012). Hodson et al. (2016)
used the decrease in concentrations of sulfate and ∗Fe (i.e.,
dissolved and colloidal iron that passed through a 0.45 µm
filter) at low flow to infer removal by sulfate reduction and
precipitation of pyrite (FeS2), iron monosulfide (FeS) and
possibly elemental sulfur in ground waters draining through an
alluvial sediment fan in Endalen (a tributary to Adventdalen).
However, the processes removing ∗Fe and sulfate from these
waters were hypothesised to be limited by a lack of organic
matter (e.g., Raiswell and Canfield, 2012). A scarcity of organic
matter has also been observed to limit the removal of ∗Fe and
sulfate from pore water in fjord sediment cores in Svalbard
(Wehrmann et al., 2014). From these findings, it is clearly
necessary to understand if the accumulation of organic carbon
in such environments results in enhanced removal of iron and
sulfate from solution.

The objective of this study is to determine how the vertical and
lateral heterogeneity of organic carbon accumulation in a high
Arctic fjord valley influences the biogeochemical processes in the
active layer and shallow permafrost sediments and pore water.
This study presents and discusses geochemical analyses of pore
water and sediment sampled from cores collected from the active
layer and shallow permafrost of ice-wedge polygonal terrain in a
high Arctic fjord valley.

MATERIALS AND METHODS

Field Site Description
Adventdalen (78◦19′N, 15◦93′E) is a 12 km × 4 km valley,
oriented NW-SE, in central Svalbard. The van Mijenfjord
and Adventdalen Groups, which contain sedimentary rocks
(sandstones, shales, and carbonates), comprise the lithology
of the Adventdalen catchment. The sandstones and shales
contain iron-bearing mineral phases, such as pyrite, siderite and
glauconite (Dallmann et al., 1999; Riber, 2009; Svinth, 2013).
There is also a small amount of iron in biotite and chlorite
(chamosite; Hodson et al., 2016).

Glacial retreat and postglacial isostatic rebound influence
landscape evolution (Milne and Shennan, 2007). Consequently,
permafrost aggradation in many high Arctic fjord valleys has
involved the freezing of reactive, fine-grained sediment originally
deposited on the fjord floor via glacio-marine sedimentation and
delta progradation throughout deglaciation (Haldorsen et al.,
2010; Gilbert et al., 2018). During the Last Glacial Maximum,
Adventdalen was filled with an erosive ice stream; this caused
permafrost to thaw (Humlum et al., 2003; Humlum, 2005;
Landvik et al., 2005). After retreat of the ice sheet, the glacial
isostatic rebound of Svalbard meant that relative sea level fell,
and a Gilbert-type delta prograded into Adventfjorden (Lønne
and Nemec, 2004). In Adventdalen, the deeper permafrost is
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epigenetic, as it formed after the progradation of the delta
(Gilbert et al., 2018). The shallower syngenetic permafrost in
the aeolian terraces of Adventdalen aggraded concurrently with
aeolian sedimentation (Gilbert et al., 2018). Although permafrost
only aggraded since deglaciation, it is continuous in Svalbard,
where it reaches a thickness of 80−100 m near the coast (Brown
et al., 1997; Humlum, 2005). The seasonally thawed layer, or
“active layer,” can be 0.4−6 m thick in Svalbard (Christiansen,
2005). In Adventdalen, the active layer thickness is around 1 m
(Christiansen et al., 2010). This study focuses on the zone 0−2 m
depth, which involves sampling the active layer and shallow
permafrost.

The climate of Svalbard is polar tundra (Kottek et al.,
2006) and in Longyearbyen between 1981 and 2010, the mean
annual air temperature (MAAT) was −4.6◦C (Førland et al.,
2011). Between 1989 and 2011, MAAT increased by 1.25◦C
per decade (Førland et al., 2011) and in 2018, the MAAT was
−1.8◦C (eklima.met.no). The mean annual ground temperature
(MAGT) ranges from −5.6◦C to −3.2◦C in the Adventdalen area
(Christiansen et al., 2010) and the rising air temperatures have
caused a recent increase in permafrost temperatures (Isaksen
et al., 2019). The vegetation cover in the valley varies between
1.3 g m−2 and 27.2 g m−2 (moss) and 2.8 g m−2 and 9.6 g m−2

(vascular plants), with the amount of moss dependent on the soil
moisture (Sjögersten et al., 2006).

The study sites (Figures 1A–C) were selected with the aim of
sampling the heterogeneity of permafrost environments in the
fjord valley. Table 1 lists the sample locations with details of the
samplingmethods. The sites are covered with Late Holocene loess
(aeolian) deposits overlying alluvial and deltaic deposits (Cable
et al., 2017; Gilbert et al., 2018). The aeolian deposits and alluvial
fans dominate the syngenetic permafrost aggradation, whilst
the permafrost beneath constitutes the epigenetic permafrost
aggradation (following downward freezing; Gilbert et al., 2018;
ToftQ13 -Hornum et al., In Review). The study sites are situated in
areas of low-centred ice-wedge polygons, which are common
in Adventdalen (Sørbel and Tolgensbakk, 2002). Ice Wedge
North (Figure 1B) is a water-saturated wetland, mainly fed
by springs, whereas Ice Wedge South (Figure 1C) is mainly
precipitation-fed and only sporadically inundated by local
snowmelt and rainfall.

Coring and Core Subdivision
Coring was undertaken before the onset of thaw, when air
temperatures were below 0◦C. Sediment cores of the frozen active
layer and shallow permafrost were extracted in segments (5 cm
diameter; between 5 and 50 cm length) to a depth of 2 m using
motorised hand drilling equipment (a Stihl BT 130 drilling engine
with a cylindrical drill head and rods). The core segments were
extruded into sterile Whirl Pak R©bags, which were sealed and
frozen during transport to the University of Sheffield, where
they were stored at −18◦C. Cores were subdivided by sawing
into 2 cm depth slices while frozen. The freshly cut surfaces
were scraped with a scalpel, and the outer 2 cm removed with
a hollow brass tube (3 cm diameter), to prevent contamination.
The sawblade, scalpel and brass tube were cleaned with 70%
isopropanol between slices.

Pore Water Extractions
A pore water extraction method was adapted from Spence et al.
(2005). Vials containing samples were transferred to a Coy Vinyl
Anaerobic chamber with a N2 atmosphere (0 ppm oxygen).
Each vial was weighed to determine the sample mass. Nitrogen-
sparged de-ionised water (Milli-Q) was added to fill each vial.
The vials were reweighed to determine the mass and volume of
water added. A 3 ml volume of water was subsequently removed
from the top of the vial to create a headspace. The vials were
crimp-capped, inverted and stored for 5 days at 4◦C whilst
submerged in water (to prevent gas diffusion across the septa).
This storage time enabled the de-ionised water to equilibrate with
the sediment pore water (e.g., Spence et al., 2005). 7 days after first
saturation of the sample, the vials were centrifuged at 7750 rpm
for 5 min and transferred back to the anaerobic chamber. The
equilibrated supernatant was filtered (0.22 µm nylon syringe
filter) for chemical analysis and the sediment remaining in the
vials was weighed after drying at 105◦C for 24 h (Kokelj and Burn,
2003; Ernakovich et al., 2017). The vials were then reweighed to
determine the initial moisture content of the samples.

Major ions (Ca2+, Mg2+, Na+, K+, Cl−, NO−
3 , and

SO2−
4 ) were determined by ion chromatography (Dionex ion

chromatograph, DX 90; limit of detection or “LOD” = 0.02 mg
l−1 for the lowest, undiluted analysis; precision<5% for the mid-
range standards). Trace metals (Fe, Mn) were determined on a
5 ml sample acidified with 50 µl reagent grade HNO3 (Fisher
Scientific Trace Metal Grade), using Inductively Coupled Plasma
Mass Spectrometry or ICPMS (PerkinElmer Elan DRC II, MA,
United States). The precision errors for repeat analyses of mid-
range standards were <5%, and the detection limits were 1.0 µg
l−1. Analyte concentrations were corrected for blank analyses and
corrected for the dilution during the pore water extraction.

Solid Phase Analyses
Carbon and nitrogen elemental abundance were determined
by drying sediment samples at 105◦C, acidifying in 6 M
HCl, rinsing, drying, homogenising, weighing between 25 and
50 mg of each sample into a tin capsule and analysing
on an Elementar vario EL cube (Animal and Plant Sciences
Department, University of Sheffield). Elemental concentrations
were checked with acetanilide standards (C8H9NO; Merck;
n = 28,% C = 70.96 ± 0.67,% N = 10.34 ± 0.10), with 2 blanks
and 2 acetanilide standards run every 15 samples.

Acid-volatile sulfur (AVS) and chromium-reducible sulfur
(CRS) were determined at the University of Leeds. A two-
step distillation method was applied to freeze-dried and milled
sediment samples, first using 6 M HCl and then boiling 3
M CrCl2 solution (Canfield et al., 1986; Fossing and Barker
Jørgensen, 1989). In each extraction, H2S was precipitated as
Ag2S, filtered, dried, and sulfide was determined gravimetrically.
The stoichiometry of the phase was used to convert the mass to
weight percent (FeS for AVS; FeS2 for CRS).

Different operationally defined iron mineral phases were
targeted with a four-step sequential extraction procedure applied
to 100 mg freeze-dried and milled sediment samples. To extract
amorphous and nanoparticulate iron (oxyhydr)oxide phases
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FIGURE 1 | (A) TheQ6 Svalbard

Q7

archipelago (inset) and Adventdalen, with a white circle indicating each site where ice-wedge polygons were sampled, (B) overlooking
polygon N1, facing east, and (C) overlooking polygon S1, facing north. Photo credit: E.L. Jones.

(Feascorbate), each sample was shaken for 24 h with 10ml ascorbate
solution (50 g l−1 sodium citrate, 50 g l−1 sodium bicarbonate
and 10 g l−1 of ascorbic acid; buffered at pH 7.5; Raiswell
et al., 2008). To target iron bound in carbonates (Feacetate),
the residual sample was shaken for 48 h at 50◦C with 10 ml

sodium acetate solution (1 M sodium acetate solution buffered
with acetic acid to pH 4.5; Poulton and Canfield, 2005). To
target crystalline iron (oxyhydr)oxides (Fedithionite), the residual
sample was then shaken for 2 h with 10 ml dithionite solution
(50 g l−1 sodium dithionate buffered to pH 4.8 with acetic acid
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TABLE 1 | Sampling locations, in UTM zone 33X.

Site Name Site Code Latitude (UTM) Longitude (UTM) Sample Type Sampling Date Shipping Date

Ice Wedge South S1 1 core 15.06.15 28.09.15

8679400 521010 8 water samples 26.08.17 & 27.08.17 29.09.17

S2a 8679343 521042 1 core 12.02.17 19.06.17

S2b 8679343 521042 1 core 14.02.17 19.06.17

Ice Wedge North N1 8680446 522541 1 core 02.05.16 10.05.16

N2 8681819 519780 1 core 15.04.14 29.04.14

N1w 8680446 522541 9 water samples 31.08.17 & 01.09.17 29.09.17

The sample types are cores of the active layer and shallow permafrost and waters from the active layer extracted via Macro Rhizon samplers. All samples were extracted

from the polygon centre.

and sodium citrate; Poulton and Canfield, 2005). Lastly, for
magnetite (Feoxalate), the residual sample was shaken with 10 ml
ammonium oxalate solution (0.2 M ammonium oxalate/0.17 M
oxalic acid buffered with ammonium hydroxide to pH 3.2)
for 6 h (Poulton and Canfield, 2005). These extractions were
performed at room temperature (except for Fecarb at 50◦C). After
centrifugation (4000 rpm for 4 min at 21◦C), the supernatant
from each extraction was stored at 4◦C until analysis by atomic
absorption spectroscopy (AAS). Recent research has shown
that mineralogical associations based on sequential chemical
extractions need to be treated with caution (Oonk et al., 2017;
Slotznick et al., 2020Q14 ; Hepburn et al., 2020). For instance,
the efficacy of the Feacetate stage in extracting iron bound in
carbonates ranges from 3 to 85% (Oonk et al., 2017; Hepburn
et al., 2020). The solubility of the targeted minerals depends
upon their grain size, crystallinity and mineralogical association
(Slotznick et al., 2020). Therefore, this study draws only tentative
links between the extraction steps and the specific minerals
represented by each step.

In situ Pore Water Sampling and
Analyses
In late summer 2017, pore waters from the S1 polygon at Ice
Wedge South and the N1 polygon at Ice Wedge North were
sampled in situ using MacroRhizon soil moisture samplers (Van
Walt Ltd.). Water samples for the analysis of δ18O-SO4 and δ34S-
SO4 were collected to fill 50 ml centrifuge tubes and were stored
at 4◦C until processing and analysis at Lancaster Environment
Centre, Lancaster University, United Kingdom. Water samples
for the analysis of δ18O-H2O were collected to fill Eppendorf
tubes and were stored at 4◦C until analysis at the University of
East Anglia (UEA). Water samples for the analysis of δ18O-SO4
and δ34S-SO4 were loaded onto ion exchange resins (SupeliteTM

DAX-8 for removal of dissolved organic matter; Dowex 50 W-
X8 for removal of cations; and Dowex AG2 × 8 for removal of
anions). Anions were eluted from the Dowex R© AG2 × 8 using
aliquots of 1 M ultrapure HCl to a total volume of 1.5 ml.
A 0.2 ml volume of 1 M BaCl2 was added to the eluted sample,
and the samples were left for 48 h at 4◦C to allow BaSO4
to precipitate. Each sample was rinsed three times with Milli-
Q de-ionised water using centrifugation and re-suspension to
remove any interfering products (e.g., chlorides). The samples
were dried at 40◦C.

The dry samples were weighed into tin or silver capsules for
analysis of δ34S-SO4 and δ18O-SO4, respectively. Isotopic analysis
was undertaken by Elemental Analyser (Elementar Pyrocube)
linked to a continuous flow isotope ratio mass spectrometer
(Isoprime 100 with dual inlet capability for injection of
monitoring gases), following methods in Wynn et al. (2015).
Combustion of BaSO4 within tin capsules yielded SO2 for
determination of δ34S. Analytical conditions demanded the use
of vanadium pentoxide as an oxidizing agent and a combustion
temperature of 1120◦C. Pyrolysis of BaSO4 at 1450◦C within
silver capsules and in the presence of carbon black, yielded CO
for the determination of δ18O. δ34S values were corrected against
Vienna Cañon Diablo Troilite (VCDT) using within run analyses
of international standards NBS-127 and SO5. δ18O values were
corrected to Vienna Standard Mean Ocean Water (VSMOW)
using within-run analyses of NBS-127 and SO6. Internal standard
MLSG (a subglacial meltwater precipitate of BaSO4) was used to
monitor drift and precision within each run as well as external
precision between analytical sequences. Within-run standard
replication (1SD) was better than ± 0.3h for both sulfur and
oxygen isotope values.

Water samples for the analysis of δ18O-H2O were analysed at
the University of East Anglia (UEA) with a Picarro 1102i analyser,
by direct injection of 2.6 µl of water. Samples were measured
together with two United States Geological Survey (USGS)
standards: USGS 64444 andUSGS 67400 and aUEANorwich Tap
Water (NTW) internal laboratory standard. Using the calibration
line defined by the USGS standards, the true isotopic composition
of the samples was calculated, relative to VSMOW.

Precipitation Correction
Pre-melt snowpack chemistry data from Svalbard were compiled
(Hodgkins et al., 1997; Wynn et al., 2006; Tye et al., 2007 Q15; Yde
et al., 2008) to calculate the mean X/Cl ratios (where X is a
major anion or cation). The following ratios in the snowpackwere
established: Na/Cl = 0.82; K/Cl = 0.02;Mg/Cl = 0.10; Ca/Cl = 0.08;
SO4/Cl = 0.11. By assuming that chloride behaves conservatively
and originates only from precipitation (pd), these ratios were
used to calculate the fraction of each anion or cation in pore water
(pw) derived from precipitation (fXpd; Equation 1):

fXpd =

(

X

Cl

)

snow

·

(

Cl

X

)

pw

(1)
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The residual (fXnpd) represents the fraction of each anion or
cation in pore water derived from weathering (Equation 2):

fXnpd = 1 − fXpd (2)

The δ34S-SO4 values were corrected for snow inputs, following
Equation (3) (from Hindshaw et al., 2016) and using the mean
snowpack δ34S-SO4 value of 17.5h from the compilation of pre-
melt snowpack chemistry from Svalbard.

34Snpd =

(

34Spw − f ·34 Ssnow
)

(

1 − f
) (3)

Where f is the fraction of sulfate derived from snowmelt. The
δ18O-SO4 values were corrected in the same way as in Equation
(3), using the mean snowpack δ18O-SO4 value of 9.28h from the
compilation of pre-melt snowpack chemistry from Svalbard.

Bedrock Sulfide δ
34S Sampling and

Analyses
Bedrock samples (sandstones, siltstones, shales) from each
geological formation in the Adventdalen Group and the
Carolinefjellet Formation were obtained from cores 13/2013 (33X
E522859 N8685197, Dirigenten), BH9/05 (Urdkollbreen, 33X
E528365 N8647669) and outcrops in Adventdalen. Rock samples
were cut into small blocks using a lapidary trim saw (Lortone,
United States) and weathered surfaces removed using a grinding
surface (Saphir 330, ATM, Germany). Rocks were washed with
de-ionised water in an ultrasonic bath before being dried in an
oven at 50◦C. Dried rocks were pulverised in a steel pestle and
mortar into small chips which were further crushed to a fine
powder in an agate disc mill (Tema, United Kingdom). Crushing
equipment was washed with water, dried with compressed air and
cleaned with ethanol between samples to prevent contamination.
Chromium-reducible sulfur (CRS) was extracted from ground
rock using the method previously described (Section “Solid Phase
Analyses”). The resultant Ag2S precipitates were weighed into
tin capsules for δ34S analysis via combustion in an Elementar
Pyrocube elemental analyser coupled to an Isoprime continuous
flow mass spectrometer at the University of Leeds. Samples were
combusted at 1150◦C to SO2 in the presence of pure oxygen
(N5.0) into a stream of helium (CP grade). The SO2 produced
flowed through tungstic oxide packed into the combustion
column to ensure quantitative conversion. Excess oxygen was
removed by reaction with hot copper wires at 850◦C and water
was removed in a Sicapent trap. Duplicate aliquots of silver
sulfide were prepared because of a small sulfur isotope memory
effect incurred during SO2 processing in the pyrocube. δ34S
values were corrected to the VCDT scale using international
standard IAEA S-3 (−32.06h) and an inter-lab chalcopyrite
standard CP-1 (−4.56h). Reproducibility of a within-run check
standard (BaSO4) was ± 0.24h (1 SD).

Data Analyses
Data analyses were performed in Microsoft Excel and R
Core Team (2017) and graphics were prepared with Excel
or the ggplot2 R package. Prior to testing correlations

between variables, Shapiro Wilk’s method was used to test
whether data were normally distributed. Many variables were
not normally distributed and their inter-relationships were
non-linear. Therefore, monotonous relationships between the
variables were tested using Spearman correlation, which is
appropriate for non-normally distributed data and is particularly
robust for dealing with skewed distributions and outliers
(du Prel et al., 2010).

RESULTS

Figure 2 shows that the IceWedge North cores had a significantly
higher gravimetric water content (g water g−1 dry sediment) than
the Ice Wedge South cores according to Welch’s t-test (Table 2).
Themean gravimetric water content in the N1 core was 2.79 g g−1

(maximum was 9.14 g g−1) and highest both at the surface and
below 90 cm depth, whereas N2 had a mean gravimetric water
content of 6.05 g g−1, with no clear patterns with depth. In S1,
however, the mean water content was 0.57 g g−1, with peaks near
the surface, and at 105, 141 and 169 cm, and a max water content
of 1.32 g g−1. The mean gravimetric water content of S2a and S2b
was similar (0.58 and 0.45 g g−1, respectively). Both these cores
had an increased water content near the surface.

The concentration of chloride was higher in the cores from
Ice Wedge South, compared to those from Ice Wedge North
(Figures 2F–J). The concentration of chloride peaked close to
the base of the active layer in cores from both sites (Figures 2F–
J). There was also a peak in chloride concentration near the
ground surface at N1 (Figure 2F). There was an accumulation
of chloride in the underlying permafrost of cores N2, S2a and S2b
(Figures 2G–J).

The sedimentary organic carbon content for the two sites
also differed significantly according to Welch’s t-test (Table 2).
Figure 2 and Table 2 show that Ice Wedge North had a higher
organic carbon content than Ice Wedge South. The surface of
N1 had a high organic carbon content (29.7 w.t.%). In the
permafrost, the organic carbon content was high, but variable
(low at 30−70 cm depths, peaking at 100−140 cm depth). S1,
however, had a more uniform and lower organic carbon content
(mean of 2.38 wt.%), but with a peak near the surface (5.40 w.t.%)
and at 61 cm depth (4.65 w.t.%).

The concentrations of Fe(aq) and sulfate in pore waters differed
significantly between the two sites, according to Welch’s t-test
(Table 2). Figures 3A,B show that the Fe(aq) in N1 and N2 was
<3.0 mmol L−1. In N1, peaks in aqueous iron occurred at 31,
67, 93, and 155 cm depth. In N2, the peaks were broader and
at depths of 15−73 cm, 109−139 cm, and 197 cm. Figures 3F,G
show that while N2 had a sulfate concentration <1.3 mmol L−1,
N1 had up to 4.7 mmol L−1 in the peak at the active layer base.
N1 had a clear pattern in sulfate, increasing from the surface
toward the base of the active layer, and then decreasing into the
permafrost (with a small peak ∼150 cm).

Figures 3C–E show that the concentration of Fe(aq) was low
(<1.5 mmol L−1) in the active layer of all the Ice Wedge South
cores. Fe(aq) in S1 peaked at 75 cm and 123 cm depth. The Fe(aq)
concentration in the permafrost of S2a and S2b had less distinct
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FIGURE 2 | Depth profiles of water content (A–E), chloride concentration (F–J), and concentration of organic carbon (K–O) for N1, N2, S1, S2a, and S2b. The
horizontal dashed line on each plot represents the base of the active layer in 2017.

peaks, but increased with depth, reaching over 7.5 mmol L−1.
Figures 3H–J show that sulfate followed similar depth trends to
Fe(aq) for all three Ice Wedge South cores, reaching >20 mmol
L−1 in core S2b. The sulfate concentration in the active layer was
higher than the Fe(aq) concentration.

Figures 4A–F show that N1 had only low concentrations
of calcium and magnesium in pore water (<6 mmol L−1),

with the highest values of both cations in the uppermost core
sample. N2 had similarly low concentrations of calcium and
magnesium (Figures 4B,G). S1 displayed distinct peaks in all
cations at the base of the active layer and >1 m depth in the
permafrost (Figures 4, 5C,H). S2a and S2b show the greatest
range in concentrations of calcium and magnesium (reaching
∼15 mmol L−1), with higher concentrations in the permafrost
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TABLE 2 | Results of Welch’s t-tests comparing organic carbon, gravimetric water content, Fe(aq), sulfate, CH4(aq), CRS, Feascorbate, Fedithionite, Feacetate, and Feoxalate

for Ice Wedge South and Ice Wedge North.

Variable t df p-Value Ice Wedge South Ice Wedge North Units of mean

mean SD n mean SD n

Organic carbon −7.9 60.8 *** 2.30 0.86 30 12.5 9.94 60 Dry wt.%

Gravimetric water content −7.4 72.5 *** 0.53 0.34 113 4.6 4.68 73 g g−1

Fe(aq) 8.7 127.8 *** 2.92 2.76 113 0.6 0.60 73 mmol l−1

Sulfate 14.6 125.9 *** 7.49 4.81 113 0.7 0.97 73 mmol l−1

CH4(aq) −10.3 70.1 *** 1.24 2.13 113 98.0 79.0 71 µmol l−1

CRS −3.1 6.2 * 0.01 0.01 9 0.1 0.04 7 Dry wt.%

Feascorbate −4.1 11.6 ** 0.47 0.14 10 1.0 0.36 10 Dry wt.%

Fedithionite 7.5 17.7 *** 0.44 0.09 10 0.1 0.10 10 Dry wt.%

Feacetate −3.5 10.2 ** 0.50 0.11 10 1.0 0.43 10 Dry wt.%

Feoxalate 5.1 17.4 *** 0.76 0.17 10 0.3 0.21 10 Dry wt.%

t is the t statistic, df is the degrees of freedom, p is the significance level, SD is the standard deviation of the mean and n is the number of samples. Asterisks indicate

level of significance: *p < 0.05; **p < 0.01; and ***p < 0.001.

(Figures 4D,E,I,J). The concentration of potassium was generally
<2.5 mmol L−1 in N2, S1, S2a and S2b (Figure 5), but reached
>20 mmol L−1 in N2. The sodium concentration was <10 mmol
L−1 in all the cores (Figures 5F–J).

The concentration of solid phase iron species was variable
in the N1 core, with concentrations: Feascorbate < 1.6 wt.%,
Fedithionite < 0.35 wt.%. Feacetate was the dominant extracted iron
phase at N1, reaching a maximum of 1.57 wt.% (Table 3 and
Supplementary Figures S1A,C,E). Feoxalate at N1 was < 0.71
wt.% (Supplementary Figure S1G). N1 had the highest CRS at
15 cm depth and at 115 cm depth (Supplementary Figure S1K),
which tracked the organic carbon content. AVS was detected at
15 cm in N1, and also in all three samples measured between 114
and 156 cm (Supplementary Figure S1I). Compared with the
porewater Fe(aq) and sulfate profiles, the concentration of solid
phase iron species was constant with depth in S1 (Supplementary

Figures S1B,D,F,H,J,L). Feascorbate was <0.8 wt.%, Fedithionite was
<0.6 wt.%, Feacetate was <0.8 wt.%, Feoxalate was <1 wt.%, CRS
was <0.05 wt.%, and no AVS was detected in this core (Table 3).
Overall, N1 had less Fedithionite and Feoxalate than S1. N1 contained
an order of magnitude more CRS than S1 (Table 3).

Table 4 summarises the δ34S-SO4 results obtained from
samples of water within the active layer. Overall, water from
Ice Wedge North water was more enriched in 34S than water
from Ice Wedge South. The Ice Wedge North δ34S-SO4 was
increasingly depleted in 34S with increasing depth. At Ice Wedge
South, the water δ34S-SO4 was most enriched in 34S at 30 cm
depth, whereas the δ34S-SO4 was more depleted in 34S at depths
of 9 cm and 60 cm.

DISCUSSION

Since emergence from the sea during the Holocene epoch,
permafrost aggradation and ongoing organic carbon
accumulation have most likely caused significant changes
in the biogeochemical processes and mineral precipitation
reactions within this high Arctic floodplain. The two sites

described above help understand these changes because their
contrasting hydrological regimes result in marked differences
in the accumulation and decomposition of permafrost organic
carbon, in spite of their proximity within the same valley.
Below, we describe how the quantity of organic carbon regulates
the consumption of alternative electron acceptors used for
microbial oxidation of organic carbon, thus causing a switch
in the water-saturated areas of the floodplain to iron- and
sulfate-reduction, with net iron and carbon storage via increased
CRS and Feacetate precipitation. In contrast, the drier areas
store far less organic carbon and instead remain dominated
by the biogeochemical signatures of pyrite oxidation. These
processes seem most likely during the earlier stages of floodplain
development, when they play a dominant role in the weathering
of fresh mineral surfaces, as expressed by the composition
of glacial meltwaters in the nearby Endalen, Bolterdalen and
Longyeardalen catchments (Yde et al., 2008; Rutter et al.,
2011; Hodson et al., 2016, respectively). In the following
discussion, we therefore explore first of all the dominant
weathering processes that are linked to pyrite oxidation,
before examining the other processes associated with sulfur
and iron biogeochemistry that better explain the later stages
of biogeochemical evolution, once more organic carbon has
become available.

Dominant Weathering Reactions
The pore water profiles in Figures 2–5 represent the following
attributes of both the active layer and the underlying permafrost:
(1) the in situ distribution of extractable or adsorbed solutes,
reactive mineral phases, and gases, and (2) the products
of additional rock-water-microorganism interactions following
thaw. Across both sites, except for N1 where potassium
dominated, calcium and magnesium were the dominant cations
(Figures 4, 5), indicating that carbonate dissolution prevails
over silicate dissolution, despite a low carbonate content in
the sediments (< 0.8 dry wt.% at Ice Wedge South) and low
volumetric carbonate contents (∼0.3 to 1.8%, but up to 10.7%) in
rocks from the Todalen and Endalen endmembers (Svinth, 2013).
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FIGURE 3 | Depth profiles of Fe(aq) (A–E) and SO2−
4 (F–J) for N1, N2, S1,

S2a, and S2b. The horizontal dashed line on each plot represents the base of
the active layer in 2017.

This contrasts with a study in a nearby unglaciated catchment
(Fardalen) that found a relatively high proportion of silicate
weathering, suggested to be the result of a combination of
relatively rapid leaching of carbonate phases from the active
layer and low rates of physical weathering in the sediments,
failing to expose fresh carbonates to weathering (Hindshaw
et al., 2016). However, carbonate weathering has previously been
shown to control the water chemistry of both glacial and non-
glacial watersheds, even where the bedrock is predominantly

FIGURE 4 | Depth profiles of calcium (A–E) and magnesium (F–J) for N1, N2,
S1, S2a, and S2b. The horizontal dashed line on each plot represents the
base of the active layer in 2017.

silicate, with only trace amounts of carbonate (Blum et al.,
1998; Horton et al., 1999). This strongly suggests that although
the low carbonate content coupled with the potential for
active layer leaching might limit the importance of carbonate
weathering in Adventdalen to some degree, the reactivity
of the carbonate phases (compared to silicates) compensated
for these factors.

The weathering processes responsible for the acquisition of
Ca2+ and Mg2+ in the sediment pore water are most likely to be
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FIGURE 5 | Depth profiles of potassium (A–E) and sodium (F–J) for N1, N2,
S1, S2a, and S2b. The horizontal dashed line on each plot represents the
base of the active layer in 2017.

represented by the following reactions (after Tranter et al., 2002;
Yde et al., 2008; Hindshaw et al., 2016):

(1) Carbonate dissolution with carbonic acid (where x is equal
to 1 or 0):

Ca1−xMgxCO3 + CO2 + H2O → (1 − x)Ca2+

+ xMg2+ + 2HCO−
3 (4)

(2) Sulfide oxidation coupled to carbonate weathering (where x
is equal to 1 or 0):

4FeS2 + 16Ca1−x(Mgx)CO3 + 15O2 + 14H2O

→ 4Fe (OH)3 + 16(1 − x)Ca2+

+ 16xMg2+ + 16HCO−
3 + 8SO2−

4 (5)

The covariance between ions is used here to identify the
dominant weathering processes in the entire active layer
and permafrost. Evidence for dolomite weathering as a
source of both Ca2+ and Mg2+ was therefore provided
by the strong positive correlation between these ions
at Ice Wedge South (p < 0.0001, ρ = 0.95) and a
regression slope close to unity (0.89). When corrected
for precipitation inputs (rain and snow) of both cations,
the slope remained unchanged (Figure 6), but the
intercept decreased significantly toward zero (0.24 mmol
L−1). Therefore dolomite represents a credible, common
source for both ions.

Although (Ca + Mg)npd was strongly correlated with SO2−npd
4

(p < 0.0001, ρ = 0.81), the regression slope was 0.73, which
suggests that some of the sulfate was associated with other
processes. Given the presence of silicates in the catchment, sulfide
oxidation coupled to silicate dissolution may play a role in
making up the deficit. Since silicates in the catchment are mainly
present as Na- and K-feldspars, they may be represented by the
formulae: NaAlSi3O8 and KAlSi3O8 in the following reactions
(Tranter et al., 2002; Hindshaw et al., 2016):

(1) Silicate dissolution with carbonic acid (where x is equal to 1
or 0):

2Na(1−x)KxNaAlSi3O8 (s) + 22CO2
(

aq
)

+ 112H2O
(

l
)

⇋ 2(1 − x)Na+
(

aq
)

+ 2xK+ + 2HCO−
3 2HCO

−
23

(

aq
)

+ H2O

+ Al2AlSi23O58(OH)4 (s) + 4H4SiO4 (6)

(2) Sulfide oxidation coupled to silicate dissolution (where x is
equal to 1 or 0):

16Na1−xKxAlSi3O8 (s) + 4FeS2
(

aq
)

+ 15O2
(

aq
)

+ 86H2O
(

l
)

⇋ 16(1 − x)Na+
(

aq
)

+ 16xK+ + 8SO2−
4

(

aq
)

+ 4Al4Si4O10 (OH)8 (s)

+ 4Fe (OH)3 (s) + 32H4SiO4(aq) (7)

When silicate and carbonate dissolution are both
driven by sulfide oxidation, the total base cation
(Ca2+ + Mg2+ + Na+ + K+) ratio to SO2−

4 tends toward
unity when precipitation inputs are insignificant (Fairchild
et al., 1994; Tranter et al., 2002; Wadham et al., 2010).
However, this characteristic signature can be overprinted
or masked by gypsum dissolution, ion exchange reactions
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TABLE 3 | Summary statistics calculated for the length of each core for the solid phase data of the cores S1 and N1 from Ice Wedge South and Ice Wedge North,
including AVS, CRS, Feascorbate, Fedithionite, Feacetate, Feoxalate, and organic carbon.

Ice Wedge North Ice Wedge South

Unit N1 N2 S1 S2a S2b

AVS dry wt.% mean 0.02 na 0 na na

(min-max) (0.00−0.05) na (0−0) na na

n 7 na 9 na na

CRS dry wt.% mean 0.12 na 0.02 na na

(min-max) (0.02−0.27) na (0.00−0.05) na na

n 7 na 9 na na

Feascorbate dry wt.% mean 0.97 na 0.44 na na

(min-max) (0.32−1.64) na (0.30−0.77) na na

n 10 na 12 na na

Fedithionite dry wt.% mean 0.13 na 0.44 na na

(min-max) (0.05−0.32) na (0.24−0.52) na na

n 10 na 12 na na

Feacetate dry wt.% mean 1.00 na 0.53 na na

(min-max) (0.38−1.57) na (0.39−0.73) na na

n 10 na 12 na na

Feoxalate dry wt.% mean 1.58 na 4.11 na na

(min-max) (0.55−3.43) na (2.48−5.78) na na

n 10 na 12 na na

Organic Carbon dry wt.% mean 8.55 16.7 2.41 1.9 2.34

(min-max) (1.84−30.8) (4.83−45.6) (1.44−5.41) (1.71−2.08) (2.06−2.66)

n 33 29 28 5 5

TABLE 4 | δ34S-SO4 in water from the active layer in polygons S1 and N2.

Site Depth (cm) δ
34S-SO4

mean min max n

S1 9 −6.90 −6.95 −6.85 2

S1 30 −2.23 −3.74 −0.13 3

S1 60 −6.78 −8.37 −5.70 3

N1 9 15.1 3.33 25.3 3

N1 30 5.19 −0.98 11.4 2

N1 60 −2.83 −4.03 −2.16 3

or mineral precipitation reactions that remove base cations
from solution. Of these, gypsum may be ignored, because
it is absent from the bedrock (Svinth, 2013). Prior to
correction for precipitation inputs, the total base cation
ratio to sulfate at Ice Wedge South was 0.98 (r2 = 0.68). The
standard correction for precipitation inputs resulted in a
lower regression slope of 0.76 (r2 = 0.70; Figure 7A). Of the
base cations, sodium was particularly affected by the above
masking effects, with non-precipitation inputs appearing
negative, similar to that which may be inferred from pore
water data for Adventdalen sediment cores presented
by Cable et al. (2017). This is indicative of ion exchange
reactions or mineral precipitation (e.g., albite) and hence
precludes the use of the non-precipitation ion ratios to
estimate the importance of sulfide oxidation coupled to
silicate dissolution.

Since the concentration of SO2−
4 derived from pyrite oxidation

was high and developed within a sometimes-anoxic environment,
alternative processes of pyrite oxidation to those shown by
Equations 5 and 7 require identification. For instance, under
acidic conditions, the Fe(OH)3 produced via Equations 5 and
7 dissociates to form Fe3+, the reduction of which could result
in a significant contribution of ferrous iron to the total cations
in solution (Raiswell and Canfield, 2012; Hodson et al., 2016;
Raiswell et al., 2018).

14Fe3+2Fe(OH)3 + FeS2 + 82H2O → 153Fe2+

+ 2SO2−
4 + 160H+ (8)

However, the reduction of iron (oxyhydr)oxide need not be
achieved in combination with sulfide oxidation (Equation 9).

4Fe(OH)3 + CH2O + 8H+
⇋ 4Fe2+ + 11H2O + CO2 (9)

In contrast to Ice Wedge South, Figure 7B shows that the Ice
Wedge North pore waters generally do not plot on the 1:1 line,
and so there is no relationship between sulfate and total cations
for these. Despite this, some samples from this site have a sulfate
to chloride ratio greater than the snowpack sulfate to chloride
ratio. This indicates that sulfide oxidation has enhanced the
sulfate concentrations. The absence of a 1:1 relationship between
total cations and sulfate at this site therefore strongly suggests that
the sulfate produced by sulfide oxidation is removed in part by
sulfate reduction during respiration of organic matter (Equation

Frontiers in Earth Science | www.frontiersin.org 11 August 2020 | Volume 8 | Article 342



1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

Jones et al. High Arctic Permafrost Biogeochemistry

FIGURE 6 | Non-precipitation-derived magnesium (Mgnpd) and non-precipitation-derived calcium (Canpd) in the three cores from Ice Wedge South. The dashed
black line corresponds to a 1:1 relationship between Canpd and Mgnpd that represents dolomite dissolution. The solid orange line is a regression for all points from
the three cores from Ice Wedge South (R2 = 0.69).

10; Wadham et al., 2004).

SO2−
4 + 2CH2O ⇋ H2S + 2HCO−

3 (10)

The major ion ratios show that sulfide oxidation coupled to
carbonate dissolution can contribute substantial quantities of
sulfate to the sediment pore water at Ice Wedge South. Here,
the weathering mechanisms are therefore analogous to those
reported in glacial catchments of the areas, which is intuitive
when the source of the sediments is considered (i.e., the aeolian
deposition of glaciofluvial sediments dessicated during early
winter). The sulfuric acid produced by sulphide oxidation may
further act as a weathering agent in this system, akin to in
glacial catchments, potentially producing carbon dioxide during
weathering of carbonates (e.g., Torres et al., 2017). In contrast,
processes removing sulfate from the sediment pore water at Ice
Wedge North preclude the use of major ion ratios to determine
the significance of sulfide oxidation. In spite of this, sulphide
oxidation is still very likely to occur because the provenance of
the sediments is the same as that at Ice Wedge South.

Sources and Sinks of Sulfate
Sulfur and oxygen isotopic values of sulfate in waters provide
compelling evidence for the identification of the sources and
sinks of sulfate (e.g., Wynn et al., 2006, 2015; Turchyn et al.,
2013; Hindshaw et al., 2016). Pre-melt snowpacks in Svalbard at
Midtre Lovenbreen (Wynn et al., 2006) and near Ny Ålesund
(Tye and Heaton, 2007) suggest a δ34S range of +17 to +18h
and a δ18O range of +8.6 to +9.7h for the precipitation-derived

sulfate contribution to the active layer pore water (i.e., SO2−pd
4 ).

A study of dissolved organosulfur compounds in a raised peat
bog showed that atmospheric sulfur in surface water sulfate is also
taken up by plants (plant δ34S was 0.1h and 4.2h) and released
when they decay, producing humic organosulfur with δ34S values
reflecting the precipitation-derived origin of the sulfate (Bottrell
et al., 2010). Other sources of sulfate to the pore water include the
oxidative weathering of pyrite (OWP), as in Equations 5, 7, and
8. The mass-weighted mean sulfide δ34S values in the geological
formations of the study region vary widely, from −40.6h in
the Grumantbyen Formation to 1.78h in the Aspelintoppen
Formation (Table 5). In the geological formations measured
closest to the sites, the range in mass weighted mean sulfide δ34S
values is narrower, from−13.8h in the Carolinefjellet Formation
to−2.01h in the Firkanten Formation. These nearby δ34S values
are therefore used to discriminate the rock-derived sulfate from
the snowpack-derived sulfate.

The δ18O of sulfate depends on the oxidation pathway; the
oxygen atoms in the sulfate can originate either from atmospheric
oxygen (+23.5h) or from the surrounding water (−11h to
−14h at our sites). In sulfate produced by OWP via Fe3+

(Equation 8), the oxygen atoms are derived solely from the
surrounding water molecules. Experiments have demonstrated
that there is no isotopic discrimination during the incorporation
of oxygen atoms from water molecules into sulfate (Lloyd,
1968). In contrast, the incorporation of oxygen atoms from O2
molecules into sulfate molecules during OWP via O2 causes an
isotopic fractionation of −8.7h. Consequently, sulfate produced
by OWP via O2 is depleted in 18O by −8.7h compared with
atmospheric O2, which is strongly enriched in 18O at +23.7h
(Bottrell and Tranter, 2002). However, during OWP via O2,
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FIGURE 7 | Total non-precipitation-derived base cations and non-precipitation-derived sulfate in panel (A) the three cores from Ice Wedge South and (B) the two
cores from Ice Wedge North. The dashed black line corresponds to a 1:1 relationship between SO4npd and (Canpd + Mgnpd + Nanpd + Knpd) that represents sulfide
oxidation coupled to silicate dissolution. The solid orange line is a regression for all points from the three cores from Ice Wedge South (R2 = 0.70).

there can be isotopic exchange between water and oxygen
atoms in sulfoxy anions of intermediate valency, obscuring
the isotopic signal of atmospheric oxygen (Balci et al., 2007).
Hence, even in OWP via O2, three out of four oxygen atoms in
the sulfate molecule could show an isotopic signal from water
(Bottrell and Tranter, 2002).

To elucidate whether the sulfate in the samples from
Adventdalen could derive from OWP only via O2, the approach
of Bottrell and Tranter (2002) was applied to the δ18O values of
sulfate from the pore waters in the active layer. This conservative
approach assumed that only the final oxygen atom incorporated
into sulfate will still carry an isotopic signature indicative of its

Frontiers in Earth Science | www.frontiersin.org 13 August 2020 | Volume 8 | Article 342



1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

Jones et al. High Arctic Permafrost Biogeochemistry

TABLE 5 | The mean quantity of sulfide (wt.%) in bedrock, the numerical mean
sulfide δ34S (h) in bedrock and the mass-weighted mean sulfide δ34S
(h) in bedrock.

Formation n Mean S Numerical

mean δ
34S

Mass

weighted

mean δ
34S

wt.% hhh hhh

Aspelintoppen 4 0.09 0.44 1.78

Battfjellet 3 0.06 1.56 1.49

Frysjaodden
(Gilsonryggen)

4 0.15 −4.98 1.34

Grumantbyen 3 0.10 −32.35 −40.60

Basilika 4 1.71 8.45 2.04

Firkanten (Endalen) 3 0.24 −6.22 −7.88

Firkanten (Todalen) 3 3.55 −0.76 −2.01

Carolinefjellet 3 0.15 −13.27 −13.79

TABLE 6 | Oxygen isotopes of weathering-derived sulfate (δ18O-SO2−npd
4 ) and

water (δ18O-H2O) compared to the threshold for anoxic oxidation of pyrite
(δ18OTHRESH).

Site Depth δ
18O-SO

2−npd
4 δ

18O-H2O δ
18OTHRESH OWP

cm hhh hhh hhh

S 9 −5.36 −11.4 −4.78 anoxic

S 9 −3.36 −11.3 −4.75 oxic

S 30 3.47 −12.3 −5.45 oxic

S 30 3.48 −12.3 −5.45 oxic

S 30 2.54 −12.4 −5.57 oxic

S 30 3.95 −12.1 −5.30 oxic

S 60 1.39 −12.0 −5.24 oxic

S 60 3.83 −13.1 −6.05 oxic

S 60 5.66 −12.4 −5.57 oxic

N 9 9.16 −13.0 −6.00 oxic

N 9 5.65 −13.0 −6.01 oxic

N 9 1.40 −13.0 −5.96 oxic

N 30 5.06 −13.7 −6.56 oxic

N 30 6.12 −13.5 −6.34 oxic

N 60 5.33 −14.1 −6.79 oxic

N 60 5.39 −14.1 −6.79 oxic

N 60 4.32 −13.8 −6.59 oxic

N 60 4.32 −13.5 −6.38 oxic

source (water or atmospheric oxygen). Only if there is less than
25% of the oxygen in a sulfate molecule derived from O2 can it
be certain that part of the sulfate was produced anoxically, by
OWP via Fe3+. Equation 11 uses the measured δ18O-H2O water
isotopic compositions (Table 6) to calculate a threshold sulfate
δ18O (δ18OTHRESH) for the formation of sulfate with one oxygen
atom from O2 and three from water (Bottrell and Tranter, 2002).

δ18OTHRESH = (23.7 − 8.7) × 0.25 + 0.75 × δ18OTHRESH

(11)

Comparing δ18O-SO2−
4 and δ18OTHRESH-SO

2−
4 data, only one

sample from the Adventdalen active layer pore water falls below

the threshold for OWP via Fe3+ (Table 6), indicating that

SO2−npd
4 in this sample originates from OWP via Fe3+. In the

rest of the samples, SO2−npd
4 could have originated fromOWP via

Fe3+, but the isotopic data do not require that and it is probable

that SO2−npd
4 in the remaining samples instead originated from

OWP via O2. This is a surprising result, as these samples are
from between 9 and 60 cm below the ground surface and it was
anticipated that oxygen penetration would decrease with profile
depth. However, it is possible that radial oxygen loss from the
roots of wetland plants may have provided an oxygen source to
this deeper pore water (e.g., Johnston et al., 2014). In addition,
ice-wedge cracking and shallower cracking restricted to the active
layer (O’Neill and Christiansen, 2018) provide a route for ingress
of oxygenated rain and meltwater.

Figure 8 shows how plotting sulfate δ18O and δ34S in sulfur
and oxygen isotopic space can provide a unique solution to
elucidating the sulfate sources. The stoichiometric stage of
pyrite oxidation results in sulfur isotopic fractionation between
pyrite and sulfate (εSO4−pyrite) of −1.3h to −0.6h (Balci
et al., 2007; Pisapia et al., 2007; Brunner et al., 2008). The
mass-weighted mean sulfide δ34S of the nearby Firkanten and
Carolinefjellet Formations, combined with the sulfur isotopic
fractionation during the stoichiometric stage of sulfide oxidation,

indicates that any pore water sample with a δ34S-SO
2−npd
4 value

between −15.1h and −2.6h is likely to have derived all of
its sulfur from the stoichiometric oxidation of pyrite. Figure 8

shows that half of the pore water samples from Adventdalen

contain SO2−npd
4 within this δ34S-SO2−npd

4 range, indicating that
the stoichiometric oxidation of pyrite is an important process
contributing sulfate to active layer pore water in Adventdalen.
This corroborates the evidence from the δ18O-SO2−

4 results
presented earlier.

Although all samples except for the most 34S-enriched sample
have a δ34S range between that of the bedrock and snowpack δ34S
values (Figure 8), the origin of sulfate in these samples in 34S
and 18O cannot be explained purely as a mixing of sulfate derived
from these two sources. There are two lines of evidence for this.
Firstly, if mixing between (relatively 34S-enriched) precipitation-
derived sulfate and (relatively 34S-depleted) weathering-derived
sulfate were solely responsible for the δ34S values of pore
water sulfate in the active layer, a negative linear correlation
between the concentration and δ34S values of sulfate would
result. There is no such negative linear correlation in the
pore water samples from Adventdalen (R2 < 0.2). Secondly,
a negative correlation between δ34S-SO2−

4 and the sulfate-to-
chloride molar ratio (SO2−

4 /Cl−) would result from mixing
between weathering-derived sulfate (high SO2−

4 /Cl−, relatively
34S-depleted) and precipitation-derived sulfate (low SO2−

4 /Cl−,
relatively 34S-enriched). In fact, there is a positive correlation
between δ34S-SO2−

4 and SO2−
4 /Cl− (R2 = 0.49). Neither line

of evidence supports mixing between snowmelt and pyrite
oxidation as the sole reason for the δ34S-SO2−

4 values observed
in the pore water samples from Adventdalen. Hence, these
statistical tests indicate that sulfate removal from the pore water
by sulfate-reducing bacteria (SRB) may be a factor in enriching
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FIGURE 8 | Water samples from the active layer of Ice Wedge South and Ice Wedge North in δ18O-SO4 and δ34S-SO4 isotope space. The blue box represents the
isotopic range of pre-melt snowpacks in Svalbard at Midtre Lovenbreen (Wynn et al., 2006) and near Ny Ålesund (Tye and Heaton, 2007). The solid blue line is a
regression line illustrating reduction of sulphate by SRB (R2 = 0.98). The nearby bedrock range is of the mass-weighted mean sulfide δ34S in the Firkanten and
Carolinefjellet Formations.

the remaining sulfate in these samples. SRB preferentially reduce
the lighter isotopes of sulfur and oxygen, leading to isotopic
enrichment of the residual sulfate. It is common for the product
H2S to be incorporated into iron sulfides or organic matter
(Brown, 1985, 1986; Blodau et al., 2007). This causes both δ34S
and δ18O values in the remaining sulfate to increase, producing
a positive correlation between them (Mandernack et al., 2003).
Since there is a positive correlation (R2 = 0.98) between δ34S and
δ18O in four samples from Ice Wedge North, and δ34S in one
sample exceeds the snowpack δ34S, it seems highly likely that SRB
are active in the pore water of the active layer at IceWedge North.

Iron and Sulfur Mineral Precipitation
The δ34S and δ18O values of pore water sulfate in the active
layer are indicative of sulfate reduction at Ice Wedge North.
The sulfate concentration was relatively low at Ice Wedge
North (< 4.7 mmol l−1; Figures 3F,G), supporting the isotopic

evidence for sulfate reduction. To produce a distinctive δ18O-
δ34S signature of sulfate reduction, the reduced sulfur must be
sequestered in the solid phase (iron sulfide or carbon-bonded
sulfur). The reactions of iron with hydrogen sulfide can be
expressed with the following simplified equation scheme, where
Equation 12 represents hydrogen sulfide reacting with iron oxides
to form iron monosulfide (AVS) and sulfur, and Equation 13
represents the formation of the more stable pyrite (CRS) from the
metastable iron monosulfide and sulfur (Raiswell and Canfield,
2012):

2FeOOH + 3H2S → 2FeS + S0 + 4H2O (12)

FeS + S0 → FeS2 (13)

The AVS formed in Equation 12 consists mainly of the iron
sulfide minerals mackinawite, greigite and amorphous FeS. These
phases are usually only stable for short periods before their
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re-oxidation or further reduction to pyrite (Chesworth, 2008).
Table 3 and Supplementary Figure S1I show that the AVS
concentrations in the Ice Wedge North sediments were low, but
detectable, in just over half the samples, reaching a maximum
of 0.05 dry weight percent (equivalent to 6.02 µmoles g−1

dry sediment; 115 cm depth). The low concentrations of AVS
indicate that AVS is not a significant long-term store of the
products of iron and sulfate reduction. The CRS includes pyrite,
which is the most thermodynamically stable iron sulfide (Berner,
1967). Concentrations of CRS are higher than AVS, reaching
0.27 dry weight percent (equivalent to 22.4 µmoles g−1 dry
sediment; 115 cm depth) at Ice Wedge North (Table 3 and
Supplementary Figure S1K).

The Ice Wedge North sediments contain abundant iron in
Feascorbate, Fedithionite, Feoxalate, Feacetate, and CRS. Ferrous iron
in the porewaters is probably derived from the dissimilatory
reduction of iron (oxyhydr)oxides (Equation 9), as well as the
oxidation of allogenic and authigenic pyrite (Equation 8). In
addition to reaction with hydrogen sulfide to form AVS or
CRS, the dissolved ferrous iron reacts with bicarbonate ions to
form Feacetate (iron bound in carbonates). Siderite (FeCO3) is
an iron carbonate, and tends to occur in reducing, CO2-rich,
hydromorphic environments, such as peatlands (Chesworth,
2008). Table 3 shows that Feacetate reaches >1.5 dry weight% in
the sediments at Ice Wedge North, indicating that it is a more
significant sink of ferrous iron than CRS. As the precipitation of
Feacetate dominates over the precipitation of CRS, it is possible
that an additional sink for the hydrogen sulfide is carbon-
bonded sulfur (CBS), which has previously been shown to be
an important sink for reduced sulfur in peat soils (Spratt and
Morgan, 1990; Blodau et al., 2007). Although CBS was not
measured in these cores, a strong positive correlation between
organic carbon content and CRS (ρ = 0.9; p < 0.001) and also
Feacetate (ρ = 0.67; p < 0.01) indicates that where the organic
carbon content is high, sulfate reduction, CRS precipitation and
Feacetate precipitation occur. Given the high concentration of
sedimentary organic carbon, it seems likely that CBS exists and
is forming at this location.

In contrast to Ice Wedge North, the δ34S and δ18O values of
sulfate in pore water from the drier active layer of S1 indicate
primarily OWP via O2, and some OWP via Fe3+. Evidence for
a mostly oxidised active layer at S1 is in the mostly low Fe(aq)
concentration in the pore water from the active layer and the
low water table (summer 2017). CRS and AVS concentrations at
this site are low, corroborating the isotopic evidence that sulfate
reduction is negligible at this site. In addition, the concentration
of iron bound in carbonate (Feacetate) is lower than at Ice Wedge
North. Finally, Figures 3C,H show that aqueous iron and sulfate
co-vary at this site, which is indicative of pyrite oxidation (e.g.,
Hodson et al., 2016).

The quantity of sedimentary organic carbon exerts a strong
control on biogeochemical processes and mineral precipitation
across both sites. Firstly, the organic carbon content is strongly
positively correlated with CRS (ρ = 0.90; p < 0.001), Feacetate
(ρ = 0.67; p < 0.01), and Feascorbate (ρ = 0.75; p < 0.001). In
addition, the sedimentary organic carbon content is negatively
correlated with pore water sulfate (ρ = −0.68; p < 0.001) and

aqueous iron (ρ = −0.61; p < 0.001). This further supports
the mechanisms discussed above, whereby in organic carbon-
poor sediment, the oxidation of pyrite produces aqueous iron
and sulfate that are not reduced to form authigenic CRS
(primarily pyrite) and Feacetate (primarily siderite). In contrast,
in organic carbon-rich sediment, the dissolved iron and sulfate
are reduced, forming Feacetate and CRS. Finally, sedimentary
organic carbon content appears to influence the formation
of Fedithionite (primarily crystalline iron (oxyhydr)oxides) and
Feoxalate (primarily magnetite). Organic carbon content was
negatively correlated with Fedithionite (ρ = −0.85; p < 0.001) and
Feoxalate (ρ = −0.89; p < 0.001). A plausible explanation is a
combination of cycling redox conditions and dissolved oxygen
levels at Ice Wedge South, which increase the crystallinity of
ferrihydrite, coupled with an inhibition of the change from
Feascorbate (primarily poorly crystalline ferrihydrite) to Fedithionite
(primarily crystalline goethite) by organic compounds at Ice
Wedge North (e.g., Schwertmann and Murad, 1988; Thompson
et al., 2006; Amstaetter et al., 2012; Herndon et al., 2017).
These significant relationships demonstrate that the quantity of
sedimentary organic carbon exerts a landscape-scale control on
the active layer and permafrost biogeochemistry.

Variations in Pore Water Geochemistry
Due to Physical Processes
The distribution of chemical species described above is partly
governed by a set of complex physical processes, including
hydrological inputs to the active layer (precipitation, advection
and ground ice melt; Throckmorton et al., 2016), hydrological
outputs from the active layer (evaporation, freezing and
advection) and the diffusion of ions from regions of high
concentration to regions of low concentration. Each of these
physical processes can influence the distribution of chemical
constituents in the active layer and their signatures commonly
overlap or mask one another. For instance, both evaporation
of water and ion freeze-out from the active layer concentrate
the pore water chemistry and enrich the δ18O and δD of the
remaining water (Throckmorton et al., 2016). However, these
physical processes are secondary to the ion ratio interpretations
discussed earlier.

The sediments in this study were dominantly fine-grained,
with the median grain size in the cores at Ice Wedge South
ranging from 34 to 60 µm. In fine-grained sediments, migration
of unfrozen water (and solutes) occurs along temperature-
induced pressure gradients toward colder ground (Kokelj and
Burn, 2003, 2005), and forms segregated ice lenses behind the
freezing front. During active layer freezeback, the migration is
upward toward the freezing front descending from the surface,
and downward toward the permafrost table during upward
freezing from the permafrost table (Cheng, 1983). This results
in the formation of ice lenses and the concentration of solutes
close to the ground surface, in the transient layer and at
the top of permafrost, whereas the middle of the active layer
becomes desiccated (Mackay, 1983). During thawing of the active
layer in summer, unfrozen water and solute migration occurs
downward into frozen ground below the advancing thaw front
(Cheng, 1983). As the thaw front reaches its maximum depth,
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TABLE 7 | Results from Welch’s t-test, which was used to test whether the concentration of chloride was significantly different for permafrost (PF) versus active layer
(AL) in each core.

Core Variable t df p AL PF Units for mean

mean SD n mean SD n

S1 chloride 0.59 11.42 n.s. 1.84 0.77 9 1.67 0.52 20 mmol L−1

S2a chloride 6.44 28.01 *** 2.39 0.81 14 12.60 8.31 28 mmol L−1

S2b chloride 3.52 31.62 ** 4.66 2.20 14 11.81 10.29 28 mmol L−1

N1 chloride 1.22 22.15 n.s. 0.75 0.52 10 1.01 0.67 23 mmol L−1

N2 chloride 1.62 31.10 n.s. 0.76 0.40 13 1.35 1.78 27 mmol L−1

t is the t statistic, df is the degrees of freedom, p is the significance level, SD is the standard deviation of the mean and n is the number of samples. Asterisks indicate

level of significance: *p < 0.05; **p < 0.01; and ***p < 0.001; n.s., not significant.

moisture and solutes can migrate into the top of permafrost.
The downward migration into the top of permafrost in summer
is greater than the upward migration out in winter when the
temperature and pressure gradients are reversed, because the
unfrozen water content and hydraulic conductivity are greatly
reduced at lower temperature (Cheng, 1983). Consequently, there
is a net annual downward migration that enriches the top of
permafrost with segregated ice and solutes following repeated
freeze-thaw cycles (Cheng, 1983; Kokelj and Burn, 2003, 2005).

There are multiple lines of evidence that indicate that these
mechanisms contribute to redistributing solutes at the study sites.
Segregated ice lenses were observed at the base of the active layer
in cores from Ice Wedge South, and the top of permafrost was
enriched with segregated ice at IceWedge North, indicated by the
elevated water contents (Figures 2A,B). Assuming that chloride
behaves conservatively, without participating in dissolution or
precipitation reactions, its concentration profile in each core can
be used to establish the net effect of moisture distribution by
repeated freeze-thaw in the sediments (Jessen et al., 2014). The
peak in the concentration of chloride close to the base of the
active layer in cores from both sites coincides with the presence
of ice lenses and is likely to have been caused by unfrozen
water and solute migration during upward freezing of the active
layer (Figures 2F,G,H,J). The peak in chloride concentration,
coincident with an increase in water content near the ground
surface at N1, may be indicative of upward moisture migration
during active layer freezing.

The upper permafrost at Ice Wedge South formed
syngenetically as the permafrost table rose in conjunction
with sediment deposition (Gilbert et al., 2018), which means that
the present-day permafrost is comprised of material formerly in
the active layer. The accumulation of chloride in the permafrost
is thus probably due to a combination of moisture migration
into the top of permafrost at the end of summer (Cheng, 1983)
and incorporation into permafrost of solutes from the base of
the active layer during permafrost aggradation (Figures 2H–J).
Cores S2a and S2b have significantly more concentrated chloride
in the permafrost compared with the active layer (Table 7), and
the chloride concentration in the active layer is greater than in
the other cores. The formation of efflorescent salts on the ground
surface at Ice Wedge South (Mora et al., 2015) further highlights
the role of solute migration along potential gradients at the site.

The higher concentration of chloride in the cores from
Ice Wedge South, compared to those from Ice Wedge

North, could be the result of diffusion of chloride from the
underlying deltaic sediments. Nearby cores display an increase
in chloride concentration from a mean of ∼1 mmol L−1 in
the loess sediments to a mean of ∼68 mmol L−1 in the
underlying deltaic sediments (Cable et al., 2017). Diffusion
upward from these marine sediments may enhance the pore
water chloride concentration at shallower depths in some
locations, although the reasons for the location-specific diffusion
are not clear. Additionally, it is likely that the topography
of the sites has changed over time with the development
of depositional landforms and ice-wedge polygons (Gilbert
et al., 2018; O’Neill and Christiansen, 2018). Changes in
topography are likely to have influenced patterns of water
movement through the active layer, while variations in active
layer thickness changed the amount of ground subject to
advection over time. The data do not enable enhanced chloride
concentration due to upward diffusion to be distinguished from
enhanced chloride concentration due to low advection rates.
However, greater rates of advection most likely occur at Ice
Wedge North due to the spring-fed hydrologic regime and
high water content.

In summary, unfrozen water and solute migration along
potential gradients contribute to water content and solute
variations with depth observed in the cores. The complex
depositional and periglacial history at the sites makes further
interpretation of chloride concentration patterns difficult. Ice
Wedge South cores display evidence of chloride diffusion from
underlying sediments and/or variations in rates of advection as
the aeolian terrace aggraded. Despite the complexity introduced
by these physical processes, the use of covariance between
ions has enabled the dominant biogeochemical processes in
Adventdalen to be elucidated.

CONCLUSION

This study highlights the importance of landscape evolution
and demonstrates that permafrost aggradation and organic
carbon accumulation have caused significant changes in the
biogeochemical processes and mineral precipitation reactions
within this high Arctic floodplain. The contrasting hydrological
regimes of the study sites result in marked differences in the
accumulation and decomposition of permafrost organic carbon.
The drier areas of the floodplain store little organic carbon and
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are representative of the earlier stages of floodplain development.
These areas are dominated by the biogeochemical signatures of
pyrite oxidation and the weathering of fresh mineral surfaces,
similar to glacial meltwaters in nearby catchments. In contrast,
the water-saturated areas of the floodplain represent the later
stages of floodplain development, where the accumulation of
organic carbon causes a switch to iron- and sulfate-reduction,
with net iron and carbon storage via increased CRS (FeS2) and
Feacetate (siderite) precipitation. In addition, contrasting chloride
concentrations demonstrate the geochemical contrast between
sediments of marine and aeolian origin. As air temperatures
continue to rise in the high Arctic and as thaw progresses deeper
into the permafrost, there are likely to be major changes in the
iron, sulfur and carbon cycling in this valley, depending on how
permafrost thaw impacts the geomorphology and hydrology of
the ice-wedge polygonal terrain.
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