15 research outputs found

    The stoichiometric interaction of the Hsp90-Sgt1-Rar1 complex by CD and SRCD spectroscopy

    Get PDF
    While the molecular details by which Hsp90 interacts with Sgt1 and Rar1 were previously described the exact stoichiometric complex that is formed remains elusive. Several possibilities remain that include two asymmetric complexes, Sgt12-Hsp902-Rar12 (two molecules of Sgt1 and Rar1 and one Hsp90 dimer) or Sgt12-Hsp902-Rar11 (with a single Rar1 molecule) and an asymmetric complex (Sgt11-Hsp902-Rar11). The Hsp90-mediated activation of NLR receptors (Nucleotide-binding domain and Leucine-rich Repeat) in the innate immunity of both plants and animals is dependent on the co-chaperone Sgt1 and in plants on Rar1, a cysteine- and histidine-rich domain (CHORD)-containing protein. The exact stoichiometry of such a complex may have a direct impact on NLR protein oligomerization and thus ultimately on the mechanism by which NLRs are activated. CD spectroscopy was successfully used to determine the stoichiometry of a ternary protein complex among Hsp90, Sgt1, and Rar1 in the presence of excess ADP. The results indicated that a symmetric Sgt12-Hsp902-Rar11 complex was formed that could allow two NLR molecules to simultaneously bind. The stoichiometry of this complex has implications on, and might promote, the dimerization of NLR proteins following their activation

    Structural and Functional Analysis of SGT1 Reveals That Its Interaction with HSP90 Is Required for the Accumulation of Rx, an R Protein Involved in Plant Immunity[W][OA]

    No full text
    SGT1 (for suppressor of G2 allele of skp1) and RAR1 (for required for Mla12 resistance) are highly conserved eukaryotic proteins that interact with the molecular chaperone HSP90 (for heat shock protein90). In plants, SGT1, RAR1, and HSP90 are essential for disease resistance triggered by a number of resistance (R) proteins. Here, we present structural and functional characterization of plant SGT1 proteins. Random mutagenesis of Arabidopsis thaliana SGT1b revealed that its CS (for CHORD-SGT1) and SGS (for SGT1 specific) domains are essential for disease resistance. NMR-based interaction surface mapping and mutational analyses of the CS domain showed that the CHORD II domain of RAR1 and the N-terminal domain of HSP90 interact with opposite sides of the CS domain. Functional analysis of the CS mutations indicated that the interaction between SGT1 and HSP90 is required for the accumulation of Rx, a potato (Solanum tuberosum) R protein. Biochemical reconstitution experiments suggest that RAR1 may function to enhance the SGT1–HSP90 interaction by promoting ternary complex formation

    Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes

    Get PDF
    Sgt1 is an adaptor protein implicated in a variety of processes, including formation of the kinetochore complex in yeast, and regulation of innate immunity systems in plants and animals. Sgt1 has been found to associate with SCF E3 ubiquitin ligases, the CBF3 kinetochore complex, plant R proteins and related animal Nod-like receptors, and with the Hsp90 molecular chaperone. We have determined the crystal structure of the core Hsp90-Sgt1 complex, revealing a distinct site of interaction on the Hsp90 N-terminal domain. Using the structure, we developed mutations in Sgt1 interfacial residues, which specifically abrogate interaction with Hsp90, and disrupt Sgt1-dependent functions in vivo, in plants and yeast. We show that Sgt1 bridges the Hsp90 molecular chaperone system to the substrate-specific arm of SCF ubiquitin ligase complexes, suggesting a role in SCF assembly and regulation, and providing multiple complementary routes for ubiquitination of Hsp90 client proteins
    corecore