1,240 research outputs found

    Small-molecule screens to study lateral root development

    Get PDF
    Development of the root system is essential for proper plant growth and development. Extension of the root system is achieved by the continuous establishment of new meristems in existing parental root tissues, which leads to the development of lateral roots. This process of lateral root organogenesis consists of different developmental stages, which are all controlled by the plant hormone auxin. In this chapter, we describe a screening method in Arabidopsis thaliana to identify small synthetic molecules that interfere with the process of lateral root development during specific developmental stages

    Allometry of root branching and its relationship to root morphological and functional traits in three range grasses

    Get PDF
    The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Löve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≀0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots

    The MYB36 transcription factor orchestrates Casparian strip formation

    Get PDF
    The endodermis in roots acts as a selectivity filter for nutrient and water transport essential for growth and development. This selectivity is enabled by the formation of lignin-based Casparian strips. Casparian strip formation is initiated by the localization of the Casparian strip domain proteins (CASPs) in the plasma membrane, at the site where the Casparian strip will form. Localized CASPs recruit Peroxidase 64 (PER64), a Respiratory Burst Oxidase Homolog F, and Enhanced Suberin 1 (ESB1), a dirigent-like protein, to assemble the lignin polymerization machinery. However, the factors that control both expression of the genes encoding this biosynthetic machinery and its localization to the Casparian strip formation site remain unknown. Here, we identify the transcription factor, MYB36, essential for Casparian strip formation. MYB36 directly and positively regulates the expression of the Casparian strip genes CASP1, PER64, and ESB1. Casparian strips are absent in plants lacking a functional MYB36 and are replaced by ectopic lignin-like material in the corners of endodermal cells. The barrier function of Casparian strips in these plants is also disrupted. Significantly, ectopic expression of MYB36 in the cortex is sufficient to reprogram these cells to start expressing CASP1–GFP, correctly localize the CASP1–GFP protein to form a Casparian strip domain, and deposit a Casparian strip-like structure in the cell wall at this location. These results demonstrate that MYB36 is controlling expression of the machinery required to locally polymerize lignin in a fine band in the cell wall for the formation of the Casparian strip

    Plant Development: Early Events in Lateral Root Initiation

    Get PDF
    SummaryHow are the lateral root founder cells specified in the pericycle to initiate lateral root development? An Aux/IAA28 signaling module activates transcription factor GATA23 to control founder cell identity

    Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide

    Get PDF
    Carbon monoxide (CO) is an endogenous gaseous molecule in organisms. Despite its reputation as a lethal gas, recent studies have shown that it is one of the most essential cellular components regulating a variety of biological processes. However, whether CO regulates physiological processes of morphological or developmental patterns in plants is largely unknown. In this paper, the observation that exogenous CO was able to promote the formation of tomato lateral roots (LR) is described. The CO stimulation of LR development was supported by analysis of tomato haem oxygenase-1 (LeHO-1), an enzymatic source of intracellular CO. It is shown that the amount of LeHO-1 proteins and transcripts increased parallel to the LR development. In addition, LeHO-1 loss-of-function tomato mutant yg-2 showed a phenotype of impaired LR development. The phenotype of yg-2 could be restored by treatment with CO. Since auxin is required for LR initiation and NO is shown to be a mediator for LR development, the correlation of CO with auxin and NO was tested. Our analysis revealed that the action of CO was blocked by the auxin transport inhibitor N-1-naphthylphthalamic acid and the NO scavenger cPTIO, respectively. Furthermore, the whole seedling assays of IAA show that treatment with CO increased the overall IAA levels in various tissues of tomato. Exposure of tomato roots to CO also enhanced intracellular NO generation. These results indicate that CO plays a critical role in controlling architectural change in tomato roots

    Lateral root emergence in Arabidopsisis dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3

    Get PDF
    Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence

    An Auxin Transport-Based Model of Root Branching in Arabidopsis thaliana

    Get PDF
    Root architecture is a crucial part of plant adaptation to soil heterogeneity and is mainly controlled by root branching. The process of root system development can be divided into two successive steps: lateral root initiation and lateral root development/emergence which are controlled by different fluxes of the plant hormone auxin. While shoot architecture appears to be highly regular, following rules such as the phyllotactic spiral, root architecture appears more chaotic. We used stochastic modeling to extract hidden rules regulating root branching in Arabidopsis thaliana. These rules were used to build an integrative mechanistic model of root ramification based on auxin. This model was experimentally tested using plants with modified rhythm of lateral root initiation or mutants perturbed in auxin transport. Our analysis revealed that lateral root initiation and lateral root development/emergence are interacting with each other to create a global balance between the respective ratio of initiation and emergence. A mechanistic model based on auxin fluxes successfully predicted this property and the phenotype alteration of auxin transport mutants or plants with modified rythms of lateral root initiation. This suggests that root branching is controlled by mechanisms of lateral inhibition due to a competition between initiation and development/emergence for auxin

    Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin

    Get PDF
    Aluminium (Al) is phytotoxic when solubilized into Al3+ in acidic soils. One of the earliest and distinct symptoms of Al3+ toxicity is inhibition of root elongation. To decipher the mechanism by which Al3+ inhibits root elongation, the role of ethylene and auxin in Al3+-induced inhibition of root elongation in Arabidopsis thaliana was investigated using the wild type and mutants defective in ethylene signalling (etr1-3 and ein2-1) and auxin polar transport (aux1-7 and pin2). Exposure of wild-type Arabidopsis to AlCl3 led to a marked inhibition of root elongation, and elicited a rapid ethylene evolution and enhanced activity of the ethylene reporter EBS:GUS in root apices. Root elongation in etr1-3 and ein2-1 mutants was less inhibited by Al3+ than that in wild-type plants. Ethylene synthesis inhibitors, Co2+ and aminoethoxyvinylglycine (AVG), and an antagonist of ethylene perception (Ag+) abolished the Al3+-induced inhibition of root elongation. There was less inhibition of root elongation by Al3+ in aux1-7 and pin2 mutants than in the wild type. The auxin polar transport inhibitor, naphthylphthalamic acid (NPA), substantially alleviated the Al3+-induced inhibition of root elongation. The Al3+ and ethylene synthesis precursor aminocyclopropane carboxylic acid (ACC) increased auxin reporter DR5:GUS activity in roots. The Al3+-induced increase in DR5:GUS activity was reduced by AVG, while the Al3+-induced increase in EBS:GUS activity was not altered by NPA. Al3+ and ACC increased transcripts of AUX1 and PIN2, and this effect was no longer observed in the presence of AVG and Co2+. These findings indicate that Al3+-induced ethylene production is likely to act as a signal to alter auxin distribution in roots by disrupting AUX1- and PIN2-mediated auxin polar transport, leading to arrest of root elongation

    Quiescent center initiation in the Arabidopsislateral root primordia is dependent on the SCARECROW transcription factor

    Get PDF
    Lateral root (LR) formation is an important determinant of root system architecture. In Arabidopsis, LRs originate from pericycle cells, which undergo a programme of morphogenesis to generate a new LR meristem. Despite its importance for root meristem organisation, the onset of organizing center (termed quiescent center; QC) formation during LR morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during LR development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model described by Sussex and co-workers. LR QC establishment coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II LR primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this LR primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in LR primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition
    • 

    corecore