173 research outputs found

    High resolution electron microscopy of ordered polymers and organic molecular crystals: Recent developments and future possibilities

    Full text link
    High Resolution Electron Microscopy (HREM) has made it possible to directly image the detailed organization of a variety of polymers and organic molecular crystals. For organic materials it is imperative to use low dose techniques that minimize the structural reorganizations that inevitably occur during electron beam irradiation. This article reviews recent developments in low dose HREM from our own laboratory and elsewhere. The developments in closely related microstructural characterization techniques are also reviewed. In the future, the ability to correct the spherical aberration of the objective lens, the use of low voltages to increase contrast, and the use of time-resolved techniques are expected to open new avenues for the ultrastructural investigations of organic materials. New sample preparation techniques, such as the ability to make thin samples by focused ion beam (FIBs), to cut samples with an oscillating diamond knife, and to more conveniently prepare cryogenically solidified specimens, are also expected to be of increasing importance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1749–1778, 2005Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48693/1/20419_ftp.pd

    Dynamics and inertia of skyrmionic spin structures

    Get PDF
    Skyrmions are topologically protected winding vector fields characterized by a spherical topology. Magnetic skyrmions can arise as the result of the interplay of various interactions, including exchange, dipolar and anisotropy energy in the case of magnetic bubbles and an additional Dzyaloshinskii-Moriya interaction in the case of chiral skyrmions. Whereas the static and low-frequency dynamics of skyrmions are already well under control, their gigahertz dynamical behaviour has not been directly observed in real space. Here, we image the gigahertz gyrotropic eigenmode dynamics of a single magnetic bubble and use its trajectory to experimentally confirm its skyrmion topology. The particular trajectory points to the presence of strong inertia, with a mass much larger than predicted by existing theories. This mass is endowed by the topological confinement of the skyrmion and the energy associated with its size change. It is thereby expected to be found in all skyrmionic structures in magnetic systems and beyond. Our experiments demonstrate that the mass term plays a key role in describing skyrmion dynamics.

    Glucocorticoids and renal sodium transport:implications for hypertension and salt-sensitivity

    Get PDF
    The clinical manifestations of glucocorticoid excess include central obesity, hyperglycaemia, dyslipidaemia, electrolyte abnormalities and hypertension. A century on from Cushing's original case study, these cardinal features are prevalent in industrialized nations. Hypertension is the major modifiable risk factor for cardiovascular and renal disease and reflects underlying abnormalities of Na(+) homeostasis. Aldosterone is a master regulator of renal Na(+) transport but here we argue that glucocorticoids are also influential, particularly during moderate excess. The hypothalamic–pituitary–adrenal axis can affect renal Na(+) homeostasis on multiple levels, systemically by increasing mineralocorticoid synthesis and locally by actions on both the mineralocorticoid and glucocorticoid receptors, both of which are expressed in the kidney. The kidney also expresses both of the 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes. The intrarenal generation of active glucocorticoid by 11βHSD1 stimulates Na(+) reabsorption; failure to downregulate the enzyme during adaption to high dietary salt causes salt-sensitive hypertension. The deactivation of glucocorticoid by 11βHSD2 underpins the regulatory dominance for Na(+) transport of mineralocorticoids and defines the ‘aldosterone-sensitive distal nephron’. In summary, glucocorticoids can stimulate renal transport processes conventionally attributed to the renin–angiotensin–aldosterone system. Importantly, Na(+) and volume homeostasis do not exert negative feedback on the hypothalamic–pituitary–adrenal axis. These actions are therefore clinically relevant and may contribute to the pathogenesis of hypertension in conditions associated with elevated glucocorticoid levels, such as the metabolic syndrome and chronic stress

    Movie-mode dynamic electron microscopy

    No full text

    High-Speed Reflection Electron Microscopy of Laser-Induced Surface Transitions

    No full text
    corecore