198 research outputs found

    Forage mass estimation in silvopastoral and full sun systems: evaluation through proximal remote sensing applied to the SAFER model.

    Get PDF
    Abstract: The operational slowness in the execution of direct methods for estimating forage mass, an important variable for defining the animal stocking rate, gave rise to the need for methods with faster responses and greater territorial coverage. In this context, the aim of this study was to evaluate a method to estimate the mass of Urochloa brizantha cv. BRS Piatã in shaded and full sun systems, through proximal sensing applied to the Simple Algorithm for Evapotranspiration Retrieving (SAFER) model, applied with the Monteith Radiation Use Efficiency (RUE) model. The study was carried out in the experimental area of Fazenda Canchim, a research center of Embrapa Pecuária Sudeste, São Carlos, SP, Brazil (21°57′S, 47°50′W, 860 m), with collections of forage mass and reflectance in the silvopastoral systems animal production and full sun. Reflectance data, as well as meteorological data obtained by a weather station installed in the study area, were used as input for the SAFER model and, later, for the radiation use efficiency model to calculate the fresh mass of forage. The forage collected in the field was sent to the laboratory, separated, weighed and dried, generating the variables of pasture total dry mass), total leaf dry mass, leaf and stalk dry mass and leaf area index. With the variables of pasture, in situ, and fresh mass, obtained from SAFER, the training regression model, in which 80% were used for training and 20% for testing the models. The SAFER was able to promisingly express the behavior of forage variables, with a significant correlation with all of them. The variables that obtained the best estimation performance model were the dry mass of leaves and stems and the dry mass of leaves in silvopastoral and full sun systems, respectively. It was concluded that the association of the SAFER model with the proximal sensor allowed us to obtain a fast, precise and accurate forage estimation method

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented

    Calibration of the CMS Drift Tube Chambers and Measurement of the Drift Velocity with Cosmic Rays

    Get PDF
    Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore