174 research outputs found

    Rights Lab, University of Nottingham, Response to the UK International Development White Paper: Call for Evidence (Foreign, Commonwealth & Development Office)

    Get PDF
    Submission to the UK Government call for evidence (led by the Foreign, Commonwealth and Development Office) International Development White Paper, September 2023. Response to questions submitted by the Rights Lab, University of Nottingham. Responses focus on questions related to innovation, partnerships and the role of the UK; varied sectoral support for the Sustainable Development Goals; and tackling climate change. The submission provides evidence associated to both a series of published and ongoing research being undertaken at the Rights Lab and by colleagues in the Schools of Geography, Law and Business

    Motherhood, Human Trafficking, and Asylum Seeking: The Experiences and Needs of Survivor Mothers in Birthing and Postnatal Care

    Get PDF
    This article aims to illuminate the little-studied phenomenon of asylum-seeking child-bearing women in the UK, survivors of violence and human trafficking. This is a significant issue in terms of the proportion of women affected and the paucity of care and support currently available to them as mother survivors. This study looked to examine the frontline support services of one project to survivor mothers through two collaborating organisations, Happy Baby Community and Hestia, and how their services support mothers' experiences of perinatal mental health, infant feeding, and the general experiences of migrant women and trafficking survivors in maternity care in the UK. Using evidence collected from semi-structured service-users' interviews and focus groups, and an anonymous online staff survey, this article shows the types of care and support that are required to address not only the challenges faced by any new mother, but also the additional challenges experienced with trafficking and seeking asylum such as mental health, housing, and legal and access to other support. This article illustrates the many complex and interrelated challenges these women face, and the way the project meets practical, informational, emotional, appraisal, and social needs. It concludes by identifying several implications of the support provided and/or needed, which could be considered by other services or policymakers looking to meet the fundamental needs and rights of this cohort

    Potential impacts on ecosystem services of land use transitions to second-generation bioenergy crops in GB

    Get PDF
    We present the first assessment of the impact of land use change (LUC) to second-generation (2G) bioenergy crops on ecosystem services (ES) resolved spatially for Great Britain (GB). A systematic approach was used to assess available evidence on the impacts of LUC from arable, semi-improved grassland or woodland/forest, to 2G bioenergy crops, for which a quantitative ‘threat matrix’ was developed. The threat matrix was used to estimate potential impacts of transitions to either Miscanthus, short-rotation coppice (SRC, willow and poplar) or short-rotation forestry (SRF). The ES effects were found to be largely dependent on previous land uses rather than the choice of 2G crop when assessing the technical potential of available biomass with a transition from arable crops resulting in the most positive effect on ES. Combining these data with constraint masks and available land for SRC and Miscanthus (SRF omitted from this stage due to lack of data), south-west and north-west England were identified as areas where Miscanthus and SRC could be grown, respectively, with favourable combinations of economic viability, carbon sequestration, high yield and positive ES benefits. This study also suggests that not all prospective planting of Miscanthus and SRC can be allocated to agricultural land class (ALC) ALC 3 and ALC 4 and suitable areas of ALC 5 are only minimally available. Beneficial impacts were found on 146 583 and 71 890 ha when planting Miscanthus or SRC, respectively, under baseline planting conditions rising to 293 247 and 91 318 ha, respectively, under 2020 planting scenarios. The results provide an insight into the interplay between land availability, original land uses, bioenergy crop type and yield in determining overall positive or negative impacts of bioenergy cropping on ecosystems services and go some way towards developing a framework for quantifying wider ES impacts of this important LUC

    Soil respiratory quotient determined via barometric process separation combined with nitrogen-15 labeling

    Get PDF
    The barometric process separation (BaPS) and Âč⁔N dilution techniques were used to determine gross nitrification rates on the same soil cores from an old grassland soil. The BaPS-technique separates the O₂ consumption into that from nitrification and that from soil organic matter (SOM) respiration. The most sensitive parameter for the calculations via the BaPS technique is the respiratory quotient (RQ = ∆CO₂/∆O₂) for SOM turnover (RQSOM). Combining both methods (BaPS–Âč⁔N ) allowed the determination of the RQSOM. The RQ value determined in such a way is adjusted for the influence of nitrification and denitrification, which are both characterized by totally different RQ values. The results for the grassland soil showed that 6 to 10% of O₂ was consumed by nitrification when incubated at 20°C and 0.49 g H₂O g⁻Âč soil. A set of BaPS measurements with the same soil at various temperature and moisture contents showed that up to 49% of the total O₂ consumption was due to nitrification. The calculated RQSOM values via the BaPS–Âč⁔N technique presented here are more closely associated with the overall SOM turnover than the usual net RQ reported in the literature. Furthermore, the RQSOM value provides an overall indication of the decomposability and chemical characteristics of the respired organic material. Hence, it has the potential to serve as a single state index for SOM quality and therefore be a useful index for SOM turnover models based on substrate quality

    Leaf litter decomposition -- Estimates of global variability based on Yasso07 model

    Full text link
    Litter decomposition is an important process in the global carbon cycle. It accounts for most of the heterotrophic soil respiration and results in formation of more stable soil organic carbon (SOC) which is the largest terrestrial carbon stock. Litter decomposition may induce remarkable feedbacks to climate change because it is a climate-dependent process. To investigate the global patterns of litter decomposition, we developed a description of this process and tested the validity of this description using a large set of foliar litter mass loss measurements (nearly 10 000 data points derived from approximately 70 000 litter bags). We applied the Markov chain Monte Carlo method to estimate uncertainty in the parameter values and results of our model called Yasso07. The model appeared globally applicable. It estimated the effects of litter type (plant species) and climate on mass loss with little systematic error over the first 10 decomposition years, using only initial litter chemistry, air temperature and precipitation as input variables. Illustrative of the global variability in litter mass loss rates, our example calculations showed that a typical conifer litter had 68% of its initial mass still remaining after two decomposition years in tundra while a deciduous litter had only 15% remaining in the tropics. Uncertainty in these estimates, a direct result of the uncertainty of the parameter values of the model, varied according to the distribution of the litter bag data among climate conditions and ranged from 2% in tundra to 4% in the tropics. This reliability was adequate to use the model and distinguish the effects of even small differences in litter quality or climate conditions on litter decomposition as statistically significant.Comment: 19 Pages, to appear in Ecological Modellin

    International Delegations and the Values of Federalism

    Get PDF
    Inland water sediments receive large quantities of terrestrial organic matter(1-5) and are globally important sites for organic carbon preservation(5,6). Sediment organic matter mineralization is positively related to temperature across a wide range of high-latitude ecosystems(6-10), but the situation in the tropics remains unclear. Here we assessed temperature effects on the biological production of CO2 and CH4 in anaerobic sediments of tropical lakes in the Amazon and boreal lakes in Sweden. On the basis of conservative regional warming projections until 2100 (ref. 11), we estimate that sediment CO2 and CH4 production will increase 9-61% above present rates. Combining the CO2 and CH4 as CO2 equivalents (CO(2)eq; ref. 11), the predicted increase is 2.4-4.5 times higher in tropical than boreal sediments. Although the estimated lake area in low latitudes is 3.2 times smaller than that of the boreal zone, we estimate that the increase in gas production from tropical lake sediments would be on average 2.4 times higher for CO2 and 2.8 times higher for CH4. The exponential temperature response of organic matter mineralization, coupled with higher increases in the proportion of CH4 relative to CO2 on warming, suggests that the production of greenhouse gases in tropical sediments will increase substantially. This represents a potential large-scale positive feedback to climate change

    Phosphorus speciation in cultivated organic soils revealed by P K-edge XANES spectroscopy

    Get PDF
    Cultivated organic soils make a significant contribution to phosphorus (P) leaching losses from agricultural land, despite occupying a small proportion of cultivated area. However, less is known about P mobilisation processes and the P forms present in peat soils compared with mineral soils. In this study, P forms and their distribution with depth were investigated in two cultivated Histosol profiles, using a combination of wet chemical extraction and P K-edge X-ray absorption near-edge structure (XANES) spectroscopy.Both profiles had elevated P content in the topsoil, amounting to around 40 mmol kg(-1), and P speciation in both profiles was strongly dominated by organic P. Topsoils were particularly rich in organic P (P-org), with relative proportions of up to 80%. Inorganic P in the profiles was almost exclusively adsorbed to surface reactive aluminium (Al) and iron (Fe) minerals. In one of the pro-files, small contributions of Ca-phosphates were detected.A commonly used P saturation index (PSI) based on ammonium-oxalate extraction indicated a low to moderate risk of P leaching from both profiles. However, the capacity of soil Al and Fe to retain P in organic soils could be reduced by high competition from organic compounds for sorption sites. This is not directly accounted for in PSI and similar indices.Accumulation of P-org in the topsoil may be attributable by microbial peat decomposition and transformation of mineral fertiliser P by both microbiota and crops. Moreover, high carbon-phosphorus ratio in the surface peat material in both profiles suggests reduced net mineralisation of P-org in the two soils. However, advancing microbial peat decomposition will eventually lead to complete loss of peat horizons and to mineralisation of P-org. Hence, P-org in both profiles represents a huge potentially mobilised P pool

    Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests

    Get PDF
    The supply of nitrogen commonly limits plant production in boreal forests and also affects species composition and ecosystem functions other than plant growth. These interrelations vary across the landscapes, with the highest N availability, plant growth and plant species richness in ground-water discharge areas (GDAs), typically in toe-slope positions, which receive solutes leaching from the much larger groundwater recharge areas (GRAs) uphill. Plant N sources include not only inorganic N, but, as heightened more recently, also organic N species. In general, also the ratio inorganic N over organic N sources increase down hillslopes. Here, we review recent evidence about the nature of the N limitation and its variations in Fennoscandian boreal forests and discuss its implications for forest ecology and management. The rate of litter decomposition has traditionally been seen as the determinant of the rate of N supply. However, while N-rich litter decomposes faster than N-poor litter initially, N-rich litter then decomposes more slowly, which means that the relation between N % of litter and its decomposability is complex. Moreover, in the lower part of the mor-layer, where the most superficial mycorrhizal roots first appear, and N availability matters for plants, the ratio of microbial N over total soil N is remarkably constant over the wide range in litter and soil C/N ratios of between 15 and 40 for N-rich and N-poor sites, respectively. Nitrogen-rich and -poor sites thus differ in the sizes of the total N pool and the microbial N pool, but not in the ratio between them. A more important difference is that the soil microbial N pool turns over faster in N-rich systems because the microbes are more limited by C, while microbes in N-poor systems are a stronger sink for available N. Furthermore, litter decomposition in the most superficial soil horizon (as studied by the so-called litter-bag method) is associated with a dominance of saprotrophic fungi, and absence of mycorrhizal fungi. The focal zone in the context of plant N supply in N-limited forests is further down the soil profile, where ectomycorrhizal (ECM) roots become abundant. Molecular evidence and stable isotope data indicate that in the typical N-poor boreal forests, nitrogen is retained in saprotrophic fungi, likely until they run out of energy (available C-compounds). Then, as heightened by recent research, ECM fungi, which are supplied by photosynthate from the trees, become the superior competitors for N. In N-poor boreal soils strong N retention by microorganisms keeps levels of available N very low. This is exacerbated by an increase in tree C allocation to mycorrhizal fungi (TCAM) relative to net primary production (NPP) with decreasing soil N supply, which causes ECM fungi to retain much of the available soil N for their own growth and transfer little to their tree hosts. The transfer of N through the ECM fungi, and not the rate of litter decomposition, is likely limiting the rate of tree N supply under such conditions. All but a few stress-tolerant less N-demanding plant species, like the ECM trees themselves and ericaceous dwarf shrubs, are excluded. With increasing N supply, a weakening of ECM symbiosis caused by the relative decline in TCAM contributes to shifts in soil microbial community composition from fungal dominance to bacterial dominance. Thus, bacteria, which are less C-demanding, but more likely to release N than fungi, take over. This, and the relatively high pH in GDA, allow autotrophic nitrifying bacteria to compete successfully for the NH4+ released by C-limited organisms and causes the N cycle to open up with leaching of nitrate (NO3−) and gaseous N losses through denitrification. These N-rich conditions allow species-rich communities of N-demanding plant species. Meanwhile, ECM fungi have a smaller biomass, are supplied with N in excess of their demand and will export more N to their host trees. Hence, the gradient from low to high N supply is characterized by profound variations in plant and soil microbial physiologies, especially their relations to the C-to-N supply ratio. We propose how interactions among functional groups can be understood and modelled (the plant-microbe carbon-nitrogen model). With regard to forest management these perspectives explain why the creation of larger tree-free gaps favors the regeneration of tree seedlings under N-limited conditions through reduced belowground competition for N, and why such gaps are less important under high N supply (but when light might be limiting). We also discuss perspectives on the relations between N supply, biodiversity, and eutrophication of boreal forests from N deposition or forest fertilization
    • 

    corecore