86 research outputs found

    Predicting Radiated Emissions from an Electrical Drive System

    Get PDF
    A Measurement-Based SPICE Model is Proposed to Predict Radiated Emissions from an Electrical Drive System over a Frequency Range from 20-300 MHz. the Model Combines a Model for the Radiated Emissions from the Cabling and Housings with a Model for Coupling Inside the Electrical Motor. the Electromagnetic Properties of the Cabling and Housings Were Captured with Measured S-Parameters. the Coupling Mechanisms Inside the Electrical Machine Were Represented using a Circuit- Element based Model. the Intent is to Provide Insight into How Coupling Mechanisms and Placement of Structures in the Motor Affect Radiated Emissions from the Drive System, and to Give the Designer an Opportunity to Evaluate the Impact of Changes to the Motor Design. the Model Was Able to Predict Radiated Emissions within Several Decibels of the Measurement over the Frequency Range of Interest, to Provide Insight into Strategies for Fixing Emissions Issues, and to Provide Estimates for the Reduction in Emissions that Could Be Expected from Each Fix

    Visualizing the Invisible: A Guide to Designing, Printing, and Incorporating Dynamic 3D Molecular Models to Teach Structure–Function Relationships

    Get PDF
    Understanding the intricate relationship between macromolecular structure and function represents a central goal of undergraduate biology education (1–3). In teaching complex three-dimensional (3D) concepts, instructors typically depend on static two-dimensional (2D) textbook images or computer-based visualization software, which can lead to unintended misconceptions (4–6). While chemical and molecular kits exist, these models cannot handle the size and detail of macromolecules. Consequently, students may graduate in the life sciences without understanding how structure underlies function or acquiring skills to translate between 2D and 3D molecular models (5, 7). Building on recent technological advances, 3D printing (3DP) potentiates an era in which students learn through direct interaction with dynamic 3D structural models. With 3DP, instructors have the opportunity to use tailor-made models of virtually any size molecule. For example, protein models can be designed to relate enzyme active site structures to kinetic activity. Furthermore, instructors can use diverse printing materials and accessories to demonstrate molecular properties, dynamics, and interactions (Fig. 1). In this article and supplemental guide, we present an example of how to incorporate a 3D model-based lesson on DNA supercoiling in an undergraduate biochemistry classroom and best practices for designing and printing 3D models

    Student Understanding of DNA Structure–Function Relationships Improves from Using 3D Learning Modules with Dynamic 3D Printed Models

    Get PDF
    Understanding the relationship between molecular structure and function represents an important goal of undergraduate life sciences. Although evidence suggests that handling physical models supports gains in student understanding of structure–function relationships, such models have not been widely implemented in biochemistry classrooms. Three-dimensional (3D) printing represents an emerging cost-effective means of producing molecular models to help students investigate structure–function concepts. We developed three interactive learning modules with dynamic 3D printed models to help biochemistry students visualize biomolecular structures and address particular misconceptions. These modules targeted specific learning objectives related to DNA and RNA structure, transcription factor-DNA interactions, and DNA supercoiling dynamics. We also designed accompanying assessments to gauge student learning. Students responded favorably to the modules and showed normalized learning gains of 49% with respect to their ability to understand and relate molecular structures to biochemical functions. By incorporating accurate 3D printed structures, these modules represent a novel advance in instructional design for biomolecular visualization. We provide instructors with the materials necessary to incorporate each module in the classroom, including instructions for acquiring and distributing the models, activities, and assessments. 9 supplemental files attached (below

    Challenges in Characterizing the Environmental Fate and Effects of Carbon Nanotubes and Inorganic Nanomaterials in Aquatic Systems

    Get PDF
    The current lack of commonly used protocols for dispersion, characterization, and aquatic toxicity testing of nanomaterials (NMs) has resulted in inconsistent results, which make meaningful comparisons difficult. The need for standardized sample preparation procedures that allow the reproducible generation of relevant test conditions remains a key challenge for studies of the environmental fate and aquatic toxicity of NMs. Together with the further development of optimized and cost-effective analytical techniques for physicochemical characterization that depend on reproducible sample preparation, such methods have the potential to overcome the current uncertainties with regard to NM dispersion properties, effective dose, and particle dissolution. In this review, recent data available on the challenges are summarized, especially those associated with preparing and quantifying NM dispersions, determining NM uptake and accumulation in aquatic organisms, and the transformation of organic and inorganic NM in aquatic species. Additional limitations and challenges that are specific to certain types of NMs are highlighted. The release of highly persistent carbon nanotubes (CNTs) from nanocomposites is determined to be a potential source of environmental contamination. Furthermore, the role of NM dissolution and the contribution of ions versus particles to NM toxicity are discussed. A phenomenon of particular relevance for the environment is photoactivation of NMs. This is elucidated with regard to its consequences in complex aquatic ecosystems. Widespread implementation of standardized protocols alongside the consideration of phenomena associated with different life cycle stages of industrial products is crucial to the future establishment of NM environmental risk assessment.publishedVersio

    Biliary epithelial senescence and plasticity in acute cellular rejection

    Get PDF
    Biliary epithelial cells (BEC) are important targets in some liver diseases, including acute allograft rejection. Although some injured BEC die, many can survive in function compromised states of senescence or phenotypic de-differentiation. This study was performed to examine changes in the phenotype of BEC during acute liver allograft rejection and the mechanism driving these changes. Liver allograft sections showed a positive correlation (p < 0.0013) between increasing T cell mediated acute rejection and the number of BEC expressing the senescence marker p21(WAF1/Cip) or the mesenchymal marker S100A4. This was modeled in vitro by examination of primary or immortalized BEC after acute oxidative stress. During the first 48 h, the expression of p21(WAF1/Cip) was increased transiently before returning to baseline. After this time BEC showed increased expression of mesenchymal proteins with a decrease in epithelial markers. Analysis of TGF-β expression at mRNA and protein levels also showed a rapid increase in TGF-β2 (p < 0.006) following oxidative stress. The epithelial de-differentiation observed in vitro was abrogated by pharmacological blockade of the ALK-5 component of the TGF-β receptor. These data suggest that stress induced production of TGF-β2 by BEC can modify liver allograft function by enhancing the de-differentiation of local epithelial cells.J.G. Brain, H. Robertson, E. Thompson, E.H. Humphreys, A. Gardner, T.A. Booth, D.E J. Jones, S.C. Afford, T. von Zglinick, A.D. Burt and J.A. Kirb

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p&lt;00001), age 70 years or older versus younger than 70 years (230 [165-322], p&lt;00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p&lt;00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    • …
    corecore