124 research outputs found

    The Relationship between Gene Polymorphism of miRNAs Regulating FGA and Schizophrenia

    Get PDF
    AIM: To investigate the relationship between the polymorphism of related gene loci of miRNAs regulated fibrinopeptide A and schizophrenia. Lay the foundation for the aetiology of schizophrenia. METHODS: Adapt to the phase match of sex and age case-control study, a total of 513 Chinese Han patients with schizophrenia were selected as the case group, 513 normal healthy persons as a control group. Obtaining SNPs information of the FGA gene by querying the dbSNP database, and reference HapMap database included SNPs site frequency information for screening. The frequency distributions of SNPs were genotyped by iMLDR® SNP detection technology. Two SNPs (pre-hsa-miR-605rs2043556 T>C, pre-hsa-miR-499a/pre-hsa-miR-499brs4909237 T < C) were analyzed to demonstrate their association with susceptibility to schizophrenia. RESULTS: There were no significant differences between patients and controls in genotype and allele distribution of SNPs(rs2043556 and rs4909237)in the precursor region of hsa-miR-605 and pre-hsa-miR-499a/pre-hsa-miR-499b. Their gene-gene interaction, which suggests that the polymorphisms of miRNA genes might not contribute to schizophrenia susceptibility in the Han Chinese population. CONCLUSION: No significant difference existed between schizophrenic patients and controls in SNP (rs2043556 and rs4909237) in the precursor region of hsa-miR-605 and pre-hsa-miR-499a/pre-hsa-miR-499b. There may not regulate FGA gene expression. Thus, hsa-miR-605 and pre-hsa-miR-499a/pre-hsa-miR-499b may not influence the risks of schizophrenia

    Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century : a retrospective analysis with a process-based biogeochemistry model

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB3010, doi:10.1029/2004GB002239.We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century in response to observed changes in the region's climate. We estimate that the net emissions of CH4 (emissions minus consumption) from these soils have increased by an average 0.08 Tg CH4 yr−1 during the twentieth century. Our estimate of the annual net emission rate at the end of the century for the region is 51 Tg CH4 yr−1. Russia, Canada, and Alaska are the major CH4 regional sources to the atmosphere, responsible for 64%, 11%, and 7% of these net emissions, respectively. Our simulations indicate that large interannual variability in net CH4 emissions occurred over the last century. Our analyses of the responses of net CH4 emissions to the past climate change suggest that future global warming will increase net CH4 emissions from the Pan-Arctic region. The higher net CH4 emissions may increase atmospheric CH4 concentrations to provide a major positive feedback to the climate system.This study was supported by a NSF biocomplexity grant (ATM-0120468), the NASA Land Cover and Land Use Change Program (NAG5-6257), and by funding from MIT Joint Program on the Science and Policy of Global Change, which is supported by a consortium of government, industry, and foundation sponsors

    Bioenergy and climate change mitigation: an assessment

    Get PDF
    Acknowledgements The authors are indebted to Julia Römer for assisting with editing several hundred references. Helmut Haberl gratefully acknowledges funding by the Austrian Academy of Sciences (Global Change Programme), the Austrian Ministry of Science and Research (BMWF, proVision programme) as well as by the EU-FP7 project VOLANTE. Carmenza Robledo-Abad received financial support from the Swiss State Secretariat for Economic Affairs.Peer reviewedPostprin

    Quantifying and Comparing Effects of Climate Engineering Methods on the Earth System

    Get PDF
    To contribute to a quantitative comparison of climate engineering (CE) methods, we assess atmosphere-, ocean-, and land-based CE measures with respect to Earth system effects consistently within one comprehensive model. We use the Max Planck Institute Earth System Model (MPI-ESM) with prognostic carbon cycle to compare solar radiation management (SRM) by stratospheric sulfur injection and two carbon dioxide removal methods: afforestation and ocean alkalinization. The CE model experiments are designed to offset the effect of fossil-fuel burning on global mean surface air temperature under the RCP8.5 scenario to follow or get closer to the RCP4.5 scenario. Our results show the importance of feedbacks in the CE effects. For example, as a response to SRM the land carbon uptake is enhanced by 92Gt by the year 2100 compared to the reference RCP8.5 scenario due to reduced soil respiration thus reducing atmospheric CO2. Furthermore, we show that normalizations allow for a better comparability of different CE methods. For example, we find that due to compensating processes such as biogeophysical effects of afforestation more carbon needs to be removed from the atmosphere by afforestation than by alkalinization to reach the same global warming reduction. Overall, we illustrate how different CE methods affect the components of the Earth system; we identify challenges arising in a CE comparison, and thereby contribute to developing a framework for a comparative assessment of CE

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore