537 research outputs found
Optimization of ion implantation condition for depletion-type silicon optical modulators
We study the influence of ion implantation conditions on the performance of depletion-type silicon optical modulators by a combined simulation of the process flow, the electrical characteristic, and the beam propagation. Through calculations using different implantation positions, energies, and tilt angles, this paper reveals that a gap between specific implantation windows is able to alleviate the modulation efficiency degradation due to the lateral straggling of implanted ions, while a tilt angle reduces the optical loss without harming the modulation efficiency. After an optimization of the implantation condition, the extinction ratio of the Mach-Zehnder modulator can be improved by 4.6 dB, while its optical loss falls from 3 to 2.47 dB. Finally, a simplified doping pattern that eliminates two implantation steps is discussed
Annual Town Meeting Fayette, Maine Year Ending June 30, 2014
status: publishe
Landscape connectivity limits the predicted impact of fungal pathogen invasion
Infectious diseases are major drivers of biodiversity loss. The risk of fungal diseases to the survival of threatened animals in nature is determined by a complex interplay between host, pathogen and environment. We here predict the risk of invasion of populations of threatened Mediterranean salamanders of the genus Lyciasalamandra by the pathogenic chytrid fungus Batrachochytrium salamandrivorans by combining field sampling and lab trials. In 494 samples across all seven species of Lyciasalamandra, B. salamandrivorans was found to be absent. Single exposure to a low (1000) number of fungal zoospores resulted in fast buildup of lethal infections in three L. helverseni. Thermal preference of the salamanders was well within the thermal envelope of the pathogen and body temperatures never exceeded the fungus' thermal critical maximum, limiting the salamanders' defense opportunities. The relatively low thermal host preference largely invalidates macroclimatic based habitat suitability predictions and, combined with current pathogen absence and high host densities, suggests a high probability of local salamander population declines upon invasion by B. salamandrivorans. However, the unfavorable landscape that shaped intraspecific host genetic diversity, lack of known alternative hosts and rapid host mortality after infection present barriers to further, natural pathogen dispersal between populations and thus species extinction. The risk of anthropogenic spread stresses the importance of biosecurity in amphibian habitats
Post-epizootic salamander persistence in a disease-free refugium suggests poor dispersal ability of Batrachochytrium salamandrivorans
Lack of disease spill-over between adjacent populations has been associated with habitat fragmentation and the absence of population connectivity. We here present a case which describes the absence of the spill-over of the chytrid fungus Batrachochytrium salamandrivorans (Bsal) between two connected subpopulations of fire salamanders (Salamandra salamandra). Based on neutrally evolving microsatellite loci, both subpopulations were shown to form a single genetic cluster, suggesting a shared origin and/or recent gene flow. Alpine newts (Ichthyosaura alpestris) and fire salamanders were found in the landscape matrix between the two sites, which are also connected by a stream and separated by no obvious physical barriers. Performing a laboratory trial using alpine newts, we confirmed that Bsal is unable to disperse autonomously. Vector-mediated dispersal may have been impeded by a combination of sub-optimal connectivity, limited dispersal ability of infected hosts and a lack of suitable dispersers following the rapid, Bsal-driven collapse of susceptible hosts at the source site. Although the exact cause remains unclear, the aggregate evidence suggests that Bsal may be a poorer disperser than previously hypothesized. The lack of Bsal dispersal between neighbouring salamander populations opens perspectives for disease management and stresses the necessity of implementing biosecurity measures preventing human-mediated spread
Optical and structural analysis of solar selective absorbing coatings based on AlSiOx:W cermets
It is reported in this work the development and study of the optical and structural properties of a solar selective absorber cermet based on AlSiOx:W. A four-layer composite film structure, W/AlSiOx:W(HA)/AlSiOx:W(LA)/AlSiOx, was deposited on stainless steel substrates using the magnetron sputtering deposition method. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with varying metal volume fraction cermets and film thickness. The chemical analysis was performed using X-ray photoelectron spectroscopy and the results show that in the high metal volume fraction cermet layer, AlSiOx:W(HA), about one third of W atoms are in the W-O oxidation state, another third in the Wx+ oxidation state and the last third in the W4+, W5+ and W6+ oxidation states. The X-ray diffractograms of AlSiOx:W layers show a broad peak indicating that both, W and AlSiOx, are amorphous. These results indicate that this film structure has a good spectral selective property that is suitable for solar thermal applications, with the coatings exhibiting a solar absorptance of 94-95.5% and emissivities of 8-9% (at 100 degrees C) and 10-14% (at 400 degrees C). The samples were subjected to a thermal annealing at 450 degrees C, in air, and 580 degrees C, in vacuum and showed very good oxidation resistance and thermal stability. Morphological characterizations were carried out using scanning electron microscopy and atomic force microscopy. Rutherford Backscattering experiments were also performed to analyze the tungsten depth profile.The authors acknowledge the support of the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. The authors are also grateful to the financial support of FCT, POCI and PORL operational programs through the project POCI-01-0145-FEDER-016907 (PTDC/CTM-ENE/2882/2014), co-financed by European community fund FEDER. The authors also acknowledge GIST Japan for using the XPS-Kratos.info:eu-repo/semantics/publishedVersio
Prevalence and mechanisms of resistance to carbapenems in Enterobacteriaceae
Objectives: To determine the point prevalence of carbapenem-non-susceptible Enterobacteriaceae (CNSE) and carbapenemase-producing Enterobacteriaceae (CPE) isolates among hospitalized patients in Belgium.
Methods: Twenty-four hospital-based laboratories prospectively collected 200 non-duplicated Enterobacteriaceae isolates from clinical specimens of hospitalized patients over a 2 month period. All isolates were screened locally for decreased susceptibility to carbapenem drugs using a disc diffusion method according to CLSI interpretative criteria. CNSE strains were referred centrally for confirmation of carbapenemase by phenotypic and molecular testing.
Results: From February to April 2012, 158 of the 4564 screened Enterobacteriaceae isolates were categorized as non-susceptible to carbapenems, resulting in a point prevalence of CNSE of 3.5% (95% CI: 2.9%–4.2%; range per centre: 0.5%–8.5%). Of the 125 referred CNSE isolates, 11 Klebsiella pneumoniae isolates [OXA-48 (n=7), KPC type (n=3) and NDM type (n=1)], 1 OXA-48-positive Escherichia coli isolate and 1 KPC-positive Klebsiella oxytoca isolate were detected in eight hospitals. None of the 72 carbapenem-non-susceptible Enterobacter spp. isolates were confirmed as CPE. The minimal estimated point prevalence of CPE isolates was 0.28% (13/ 4564; 95% CI: 0.13%–0.44%) overall (range per centre: 0%–1.5%).
Conclusions: Despite the overall low prevalence of CNSE found in this study, the detection of CPE isolates in one-third of the participating centres raises concerns and highly suggests the spread and establishment of CPE in Belgian hospitals
Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector
The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z′ gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/γ bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the μ + μ −channel. A Z ′ boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z′ Models
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
- …