11 research outputs found

    Ventricular Dysrhythmias Associated with Poisoning and Drug Overdose: A 10-Year Review of Statewide Poison Control Center Data from California

    Full text link
    Background: Ventricular dysrhythmias are a serious consequence associated with drug overdose and chemical poisoning. The risk factors for the type of ventricular dysrhythmia and the outcomes by drug class are not well documented. Objective: The aim of this study was to determine the most common drugs and chemicals associated with ventricular dysrhythmias and their outcomes. Methods: We reviewed all human exposures reported to a statewide poison control system between 2002 and 2011 that had a documented ventricular dysrhythmia. Cases were differentiated into two groups by type of arrhythmia: (1) ventricular fibrillation and/or tachycardia (VT/VF); and (2) torsade de pointes (TdP). Results: Among the 300 potential cases identified, 148 cases met the inclusion criteria. Of these, 132 cases (89 %) experienced an episode of VT or VF, while the remaining 16 cases (11 %) had an episode of TdP. The most commonly involved therapeutic classes of drugs associated with VT/VF were antidepressants (33/132, 25 %), stimulants (33/132, 25 %), and diphenhydramine (16/132, 12.1 %). Those associated with TdP were antidepressants (4/16, 25 %), methadone (4/16, 25 %), and antiarrhythmics (3/16, 18.75 %). Drug exposures with the greatest risk of death in association with VT/VF were antidepressant exposure [odds ratio (OR) 1.71; 95 % confidence interval (CI) 0.705–4.181] and antiarrhythmic exposure (OR 1.75; 95 % CI 0.304–10.05), but neither association was statistically significant. Drug exposures with a statistically significant risk for TdP included methadone and antiarrhythmic drugs. Conclusions: Antidepressants and stimulants were the most common drugs associated with ventricular dysrhythmias. Patients with suspected poisonings by medications with a high risk of ventricular dysrhythmia warrant prompt ECG monitoring

    A scalable earth observations‐based decision support system for hydropower planning in Africa

    No full text
    Hydropower is a key part of the increasing shift in power production from nonrenewables to renewable energy. In regions such as Africa, hydropower reservoirs are vital for achieving several sustainable development goals, including clean water, energy, and poverty elimination. However, the operations of hydropower reservoirs are often suboptimal due to the lack of hydrologic data for generating reliable inflow forecasts. Here, we present a decision support system (DSS) framework for hydropower planning at daily to seasonal time scales by combining data from earth observation satellites (EOS) with ensemble climate forecasts from dynamical models and hydrologic modeling. The large uncertainty inherent in satellite-based datasets is overcome by using a data validation framework which does not require ground-based measurements. In addition, an EOS evapotranspiration product is used as a proxy for streamflow in calibrating hydrologic models. Compared to a DSS forced with a climatological forecast (zero-skill), the hydropower production with the new DSS increased by 20%. The study highlights the advantage of using data from EOS in overcoming the issue of data scarcity in water resources applications, particularly in developing regions of the world such as Africa

    Adaptive Capacity to Extreme Heat: Results from a Household Survey in Houston, Texas

    No full text
    Extreme heat is the leading cause of weather-related mortality in the United States, suggesting the necessity for better understanding population vulnerability to extreme heat. The work presented here is part of a larger study examining vulnerability to extreme heat in current and future climates [System for Integrated Modeling of Metropolitan Extreme Heat Risk (SIMMER)] and was undertaken to assess Houston, Texas, residents\u27 adaptive capacity to extreme heat. A comprehensive, semistructured survey was conducted by telephone at 901 households in Houston in 2011. Frequency and logistic regression analyses were conducted. Results show that 20% of the survey respondents reported heat-related symptoms in the summer of 2011 despite widespread air conditioning availability throughout Houston. Of those reporting heat-related symptoms experienced in the home ( n = 56), the majority could not afford to use air conditioning because of the high cost of electricity. This research highlights the efficacy of community-based surveys to better understand adaptive capacity at the household level; this survey contextualizes population vulnerability and identifies more targeted intervention strategies and adaptation actions

    Transforming knowledge systems for life on Earth : Visions of future systems and how to get there

    Get PDF
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.Peer reviewe

    Transforming knowledge systems for life on Earth: Visions of future systems and how to get there

    Get PDF
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent

    Transforming knowledge systems for life on Earth: Visions of future systems and how to get there

    No full text
    Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent
    corecore