230 research outputs found
NASA Flight Planning Branch Space Shuttle Lessons Learned
Planning products and procedures that allowed the mission Flight Control Teams and the Astronaut crews to plan, train and fly every Space Shuttle mission were developed by the Flight Planning Branch at the NASA Johnson Space Center in Houston, Texas. As the Space Shuttle Program came to a close, lessons learned were collected from each phase of the successful execution of these Space Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines have been analyzed and will be discussed. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the Space Shuttle and ground team has also defined specific lessons used in improving the control team s effectiveness. Methodologies to communicate and transmit messages, images, and files from the Mission Control Center to the Orbiter evolved over several years. These lessons were vital in shaping the effectiveness of safe and successful mission planning and have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of Space Shuttle flight missions are not only documented in this paper, but are also discussed regarding how they pertain to changes in process and consideration for future space flight planning
The UV-Optical Color Dependence of Galaxy Clustering in the Local Universe
We measure the UV-optical color dependence of galaxy clustering in the local
universe. Using the clean separation of the red and blue sequences made
possible by the NUV - r color-magnitude diagram, we segregate the galaxies into
red, blue and intermediate "green" classes. We explore the clustering as a
function of this segregation by removing the dependence on luminosity and by
excluding edge-on galaxies as a means of a non-model dependent veto of highly
extincted galaxies. We find that \xi (r_p, \pi) for both red and green galaxies
shows strong redshift space distortion on small scales -- the "finger-of-God"
effect, with green galaxies having a lower amplitude than is seen for the red
sequence, and the blue sequence showing almost no distortion. On large scales,
\xi (r_p, \pi) for all three samples show the effect of large-scale streaming
from coherent infall. On scales 1 Mpc/h < r_p < 10 Mpc/h, the projected
auto-correlation function w_p(r_p) for red and green galaxies fits a power-law
with slope \gamma ~ 1.93 and amplitude r_0 ~ 7.5 and 5.3, compared with \gamma
~ 1.75 and r_0 ~ 3.9 Mpc/h for blue sequence galaxies. Compared to the
clustering of a fiducial L* galaxy, the red, green, and blue have a relative
bias of 1.5, 1.1, and 0.9 respectively. The w_p(r_p) for blue galaxies display
an increase in convexity at ~ 1 Mpc/h, with an excess of large scale
clustering. Our results suggest that the majority of blue galaxies are likely
central galaxies in less massive halos, while red and green galaxies have
larger satellite fractions, and preferentially reside in virialized structures.
If blue sequence galaxies migrate to the red sequence via processes like
mergers or quenching that take them through the green valley, such a
transformation may be accompanied by a change in environment in addition to any
change in luminosity and color.Comment: accepted by MNRA
The Sloan Digital Sky Survey: The Cosmic Spectrum and Star-Formation History
We present a determination of the `Cosmic Optical Spectrum' of the Universe,
i.e. the ensemble emission from galaxies, as determined from the red-selected
Sloan Digital Sky Survey main galaxy sample and compare with previous results
of the blue-selected 2dF Galaxy Redshift Survey. Broadly we find good agreement
in both the spectrum and the derived star-formation histories. If we use a
power-law star-formation history model where star-formation rate out to z=1, then we find that of 2 to 3 is still the most
likely model and there is no evidence for current surveys missing large amounts
of star formation at high redshift. In particular `Fossil Cosmology' of the
local universe gives measures of star-formation history which are consistent
with direct observations at high redshift. Using the photometry of SDSS we are
able to derive the cosmic spectrum in absolute units (i.e.^{-1}^{-3}\Msun/\Lsun\omstars h = 0.0025\alpha\Msun^{-1}^{-3}$ today.Comment: 17 pages, 11 figures, ApJ in press (April 10th 2003
Multistate Comparison of Attractants for Monitoring Drosophila suzukii (Diptera: Drosophilidae) in Blueberries and Caneberries
Drosophila suzukii Matsumara, also referred to as the spotted wing drosophila, has recently expanded its global range with significant consequences for its primary host crops: blueberries, blackberries, raspberries, cherries, and strawberries. D. suzukii populations can increase quickly, and their infestation is difficult to predict and prevent. The development of effective tools to detect D. suzukii presence in new areas, to time the beginning of activity within a crop, to track seasonal activity patterns, and to gauge the effectiveness of management efforts has been a key research goal. We compared the efficiency, selectivity, and relationship to fruit infestation of a range of commonly used homemade baits and a synthetic formulated lure across a wide range of environments in 10 locations throughout the United States. Several homemade baits were more efficient than apple cider vinegar, a commonly used standard, and a commercially formulated lure was, in some configurations and environments, comparable with the most effective homemade attractant as well as potentially more selective. All alternative attractants also captured flies between 1 and 2 wk earlier than apple cider vinegar, and detected the presence of D. suzukii prior to the development of fruit infestation. Over half the Drosophila spp. flies captured in traps baited with any of the attractants were not D. suzukii, which may complicate their adoption by nonexpert users. The alternative D. suzukii attractants tested are improvement on apple cider vinegar and may be useful in the development of future synthetic lure
Spitzer Imaging of i'-drop Galaxies: Old Stars at z~6
We present new evidence for mature stellar populations with ages >100Myr in
massive galaxies (M_stellar>10^10M_sun) seen at a time when the Universe was
less than 1Gyr old. We analyse the prominent detections of two z~6 star-forming
galaxies (SBM03#1 & #3) made at wavelengths corresponding to the rest-frame
optical using the IRAC camera onboard the Spitzer Space Telescope. We had
previously identified these galaxies in HST/ACS GOODS images of Chandra Deep
Field South through the "i-drop" Lyman break technique, and subsequently
confirmed spectroscopically with the Keck telescope. The new Spitzer photometry
reveals significant Balmer/4000Ang discontinuities, indicative of dominant
stellar populations with ages >100Myr. Fitting a range of population synthesis
models (for normal initial mass functions) to the HST/Spitzer photometry yields
ages of 250-650Myr and implied formation redshifts z~7.5-13.5 in
presently-accepted world models. Remarkably, our sources have best-fit stellar
masses of 1.3-3.8x10^10M_sun (95% confidence) assuming a Salpeter initial mass
function. This indicates that at least some galaxies with stellar masses >20%
of those of a present-day L* galaxy had already assembled within the first Gyr
after the Big Bang. We also deduce that the past average star formation rate
must be comparable to the current observed rate (SFR_UV~5-30M_sun/yr),
suggesting that there may have been more vigorous episodes of star formation in
such systems at higher redshifts. Although a small sample, limited primarily by
Spitzer's detection efficiency, our result lends support to the hypothesis
advocated in our earlier analyses of the Ultra Deep Field and GOODS HST/ACS
data. The presence of established systems at z~6 suggests long-lived sources at
earlier epochs (z>7) played a key role in reionizing the Universe.Comment: Accepted for publication in MNRAS (minor corrections made
HST/ACS Emission Line Imaging of Low Redshift 3CR Radio Galaxies I: The Data
We present 19 nearby (z<0.3) 3CR radio galaxies imaged at low- and
high-excitation as part of a Cycle 15 Hubble Space Telescope snapshot survey
with the Advanced Camera for Surveys. These images consist of exposures of the
H-alpha (6563 \AA, plus [NII] contamination) and [OIII] 5007 \AA emission lines
using narrow-band linear ramp filters adjusted according to the redshift of the
target. To facilitate continuum subtraction, a single-pointing 60 s line-free
exposure was taken with a medium-band filter appropriate for the target's
redshift. We discuss the steps taken to reduce these images independently of
the automated recalibration pipeline so as to use more recent ACS flat-field
data as well as to better reject cosmic rays. We describe the method used to
produce continuum-free (pure line-emission) images, and present these images
along with qualitative descriptions of the narrow-line region morphologies we
observe. We present H-alpha+[NII] and [OIII] line fluxes from aperture
photometry, finding the values to fall expectedly on the redshift-luminosity
trend from a past HST/WFPC2 emission line study of a larger, generally higher
redshift subset of the 3CR. We also find expected trends between emission line
luminosity and total radio power, as well as a positive correlation between the
size of the emission line region and redshift. We discuss the associated
interpretation of these results, and conclude with a summary of future work
enabled by this dataset.Comment: 18 pages, 12 figures, accepted for publication in ApJ
The Extreme Hosts of Extreme Supernovae
We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts
of seventeen luminous supernovae (LSNe, having peak M_V < -21) and compare them
to a sample of 26,000 galaxies from a cross-match between the SDSS DR4 spectral
catalog and GALEX interim release 1.1. We place the LSNe hosts on the galaxy
NUV-r versus M_r color magnitude diagram (CMD) with the larger sample to
illustrate how extreme they are. The LSN hosts appear to favor low-density
regions of the galaxy CMD falling on the blue edge of the blue cloud toward the
low luminosity end. From the UV-optical photometry, we estimate the star
formation history of the LSN hosts. The hosts have moderately low star
formation rates (SFRs) and low stellar masses (M_*) resulting in high specific
star formation rates (sSFR). Compared with the larger sample, the LSN hosts
occupy low-density regions of a diagram plotting sSFR versus M_* in the area
having higher sSFR and lower M_*. This preference for low M_*, high sSFR hosts
implies the LSNe are produced by an effect having to do with their local
environment. The correlation of mass with metallicity suggests that perhaps
wind-driven mass loss is the factor that prevents LSNe from arising in
higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe
(>100 M_sun), by appearing in low-SFR hosts, are potential tests for theories
of the initial mass function that limit the maximum mass of a star based on the
SFR.Comment: 8 pages, 3 figures, 2 tables, accepted to ApJ, amended references and
updated SN designation
The Sloan Digital Sky Survey Quasar Catalog IV. Fifth Data Release
We present the fourth edition of the Sloan Digital Sky Survey (SDSS) Quasar
Catalog. The catalog contains 77,429 objects; this is an increase of over
30,000 entries since the previous edition. The catalog consists of the objects
in the SDSS Fifth Data Release that have luminosities larger than M_i = -22.0
(in a cosmology with H_0 = 70 km/s/Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7)
have at least one emission line with FWHM larger than 1000 km/s, or have
interesting/complex absorption features, are fainter than i=15.0, and have
highly reliable redshifts. The area covered by the catalog is 5740 sq. deg. The
quasar redshifts range from 0.08 to 5.41, with a median value of 1.48; the
catalog includes 891 quasars at redshifts greater than four, of which 36 are at
redshifts greater than five. Approximately half of the catalog quasars have i <
19; nearly all have i < 21. For each object the catalog presents positions
accurate to better than 0.2 arcsec. rms per coordinate, five-band (ugriz)
CCD-based photometry with typical accuracy of 0.03 mag, and information on the
morphology and selection method. The catalog also contains basic radio,
near-infrared, and X-ray emission properties of the quasars, when available,
from other large-area surveys. The calibrated digital spectra cover the
wavelength region 3800--9200A at a spectral resolution of ~2000. The spectra
can be retrieved from the public database using the information provided in the
catalog. The average SDSS colors of quasars as a function of redshift, derived
from the catalog entries, are presented in tabular form. Approximately 96% of
the objects in the catalog were discovered by the SDSS.Comment: 37 pages, Accepted for publication in A
- …